bsnl-chatboot / app.py
samim2024's picture
Update app.py
6d72d65 verified
raw
history blame
6.6 kB
# app.py
import streamlit as st
import os
from io import BytesIO
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.llms import HuggingFaceHub
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
import faiss
import uuid
# Load secrets from Streamlit
HUGGINGFACEHUB_API_TOKEN = st.secrets["HUGGINGFACEHUB_API_TOKEN"]
RAG_ACCESS_KEY = st.secrets["RAG_ACCESS_KEY"]
# Initialize session state
if "vectorstore" not in st.session_state:
st.session_state.vectorstore = None
if "history" not in st.session_state:
st.session_state.history = []
if "authenticated" not in st.session_state:
st.session_state.authenticated = False
# Sidebar with logo and authentication
with st.sidebar:
try:
st.image("bsnl_logo.png", width=200)
except FileNotFoundError:
st.warning("BSNL logo not found.")
st.header("RAG Control Panel")
api_key_input = st.text_input("Enter RAG Access Key", type="password")
# Custom styled Authenticate button
st.markdown("""
<style>
.auth-button button {
background-color: #007BFF !important;
color: white !important;
font-weight: bold;
border-radius: 8px;
padding: 10px 20px;
border: none;
transition: all 0.3s ease;
}
.auth-button button:hover {
background-color: #0056b3 !important;
transform: scale(1.05);
}
</style>
""", unsafe_allow_html=True)
with st.container():
st.markdown('<div class="auth-button">', unsafe_allow_html=True)
if st.button("Authenticate"):
if api_key_input == RAG_ACCESS_KEY:
st.session_state.authenticated = True
st.success("Authentication successful!")
else:
st.error("Invalid API key.")
st.markdown('</div>', unsafe_allow_html=True)
if st.session_state.authenticated:
input_data = st.file_uploader("Upload a PDF file", type=["pdf"])
if st.button("Process File") and input_data is not None:
try:
vector_store = process_input(input_data)
st.session_state.vectorstore = vector_store
st.success("File processed successfully. You can now ask questions.")
except Exception as e:
st.error(f"Processing failed: {str(e)}")
st.subheader("Chat History")
for i, (q, a) in enumerate(st.session_state.history):
st.write(f"**Q{i+1}:** {q}")
st.write(f"**A{i+1}:** {a}")
st.markdown("---")
# Main app interface
def main():
st.markdown("""
<style>
.stApp {
font-family: 'Roboto', sans-serif;
background-color: #FFFFFF;
color: #333;
}
</style>
""", unsafe_allow_html=True)
st.title("RAG Q&A App with Mistral AI")
st.markdown("Welcome to the BSNL RAG App! Upload a PDF and ask questions.")
if not st.session_state.authenticated:
st.warning("Please authenticate using the sidebar.")
return
if st.session_state.vectorstore is None:
st.info("Please upload and process a PDF file.")
return
query = st.text_input("Enter your question:")
if st.button("Submit") and query:
with st.spinner("Generating answer..."):
try:
answer = answer_question(st.session_state.vectorstore, query)
st.session_state.history.append((query, answer))
st.write("**Answer:**", answer)
except Exception as e:
st.error(f"Error generating answer: {str(e)}")
# Process PDF and build vector store
def process_input(input_data):
os.makedirs("vectorstore", exist_ok=True)
os.chmod("vectorstore", 0o777)
progress_bar = st.progress(0)
status = st.status("Processing PDF file...", expanded=True)
status.update(label="Reading PDF file...")
progress_bar.progress(0.2)
pdf_reader = PdfReader(BytesIO(input_data.read()))
documents = "".join([page.extract_text() or "" for page in pdf_reader.pages])
status.update(label="Splitting text...")
progress_bar.progress(0.4)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
texts = text_splitter.split_text(documents)
status.update(label="Creating embeddings...")
progress_bar.progress(0.6)
hf_embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2",
model_kwargs={'device': 'cpu'}
)
status.update(label="Building vector store...")
progress_bar.progress(0.8)
dimension = len(hf_embeddings.embed_query("test"))
index = faiss.IndexFlatL2(dimension)
vector_store = FAISS(
embedding_function=hf_embeddings,
index=index,
docstore=InMemoryDocstore({}),
index_to_docstore_id={}
)
uuids = [str(uuid.uuid4()) for _ in texts]
vector_store.add_texts(texts, ids=uuids)
status.update(label="Saving vector store...")
progress_bar.progress(0.9)
vector_store.save_local("vectorstore/faiss_index")
status.update(label="Done!", state="complete")
progress_bar.progress(1.0)
return vector_store
# Answer the user's query
def answer_question(vectorstore, query):
try:
llm = HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
model_kwargs={"temperature": 0.7, "max_length": 512},
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
)
except Exception as e:
raise RuntimeError("Failed to load LLM. Check Hugging Face API key and access rights.") from e
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
prompt_template = PromptTemplate(
template="Use the context to answer the question concisely:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:",
input_variables=["context", "question"]
)
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=False,
chain_type_kwargs={"prompt": prompt_template}
)
result = qa_chain({"query": query})
return result["result"].split("Answer:")[-1].strip()
# Run the app
if __name__ == "__main__":
main()