Spaces:
Sleeping
Sleeping
File size: 6,602 Bytes
5d008ae aa2bec3 6d72d65 aa2bec3 6d72d65 aa2bec3 6d72d65 aa2bec3 0c25e8c 5d008ae 0c25e8c 31ffc5e 5d008ae aa2bec3 5d008ae 6d72d65 31ffc5e 5d008ae aa2bec3 31ffc5e 6d72d65 aa2bec3 31ffc5e c5d0599 31ffc5e 5d008ae aa2bec3 31ffc5e aa2bec3 5d008ae aa2bec3 31ffc5e aa2bec3 5d008ae aa2bec3 5d008ae 31ffc5e aa2bec3 6d72d65 6c5d119 5d008ae 6d72d65 5d008ae 1676c9d 31ffc5e 5d008ae 7edfd17 5d008ae 7edfd17 31ffc5e 5d008ae 31ffc5e 5d008ae 1676c9d 5d008ae 31ffc5e aa2bec3 31ffc5e aa2bec3 5d008ae 31ffc5e 5d008ae 31ffc5e aa2bec3 31ffc5e aa2bec3 31ffc5e 5d008ae aa2bec3 5d008ae 7edfd17 5d008ae aa2bec3 5d008ae 1676c9d aa2bec3 6d72d65 aa2bec3 31ffc5e 6d72d65 31ffc5e 6d72d65 5d008ae aa2bec3 6d72d65 aa2bec3 5d008ae aa2bec3 5d008ae aa2bec3 6d72d65 aa2bec3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# app.py
import streamlit as st
import os
from io import BytesIO
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.llms import HuggingFaceHub
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
import faiss
import uuid
# Load secrets from Streamlit
HUGGINGFACEHUB_API_TOKEN = st.secrets["HUGGINGFACEHUB_API_TOKEN"]
RAG_ACCESS_KEY = st.secrets["RAG_ACCESS_KEY"]
# Initialize session state
if "vectorstore" not in st.session_state:
st.session_state.vectorstore = None
if "history" not in st.session_state:
st.session_state.history = []
if "authenticated" not in st.session_state:
st.session_state.authenticated = False
# Sidebar with logo and authentication
with st.sidebar:
try:
st.image("bsnl_logo.png", width=200)
except FileNotFoundError:
st.warning("BSNL logo not found.")
st.header("RAG Control Panel")
api_key_input = st.text_input("Enter RAG Access Key", type="password")
# Custom styled Authenticate button
st.markdown("""
<style>
.auth-button button {
background-color: #007BFF !important;
color: white !important;
font-weight: bold;
border-radius: 8px;
padding: 10px 20px;
border: none;
transition: all 0.3s ease;
}
.auth-button button:hover {
background-color: #0056b3 !important;
transform: scale(1.05);
}
</style>
""", unsafe_allow_html=True)
with st.container():
st.markdown('<div class="auth-button">', unsafe_allow_html=True)
if st.button("Authenticate"):
if api_key_input == RAG_ACCESS_KEY:
st.session_state.authenticated = True
st.success("Authentication successful!")
else:
st.error("Invalid API key.")
st.markdown('</div>', unsafe_allow_html=True)
if st.session_state.authenticated:
input_data = st.file_uploader("Upload a PDF file", type=["pdf"])
if st.button("Process File") and input_data is not None:
try:
vector_store = process_input(input_data)
st.session_state.vectorstore = vector_store
st.success("File processed successfully. You can now ask questions.")
except Exception as e:
st.error(f"Processing failed: {str(e)}")
st.subheader("Chat History")
for i, (q, a) in enumerate(st.session_state.history):
st.write(f"**Q{i+1}:** {q}")
st.write(f"**A{i+1}:** {a}")
st.markdown("---")
# Main app interface
def main():
st.markdown("""
<style>
.stApp {
font-family: 'Roboto', sans-serif;
background-color: #FFFFFF;
color: #333;
}
</style>
""", unsafe_allow_html=True)
st.title("RAG Q&A App with Mistral AI")
st.markdown("Welcome to the BSNL RAG App! Upload a PDF and ask questions.")
if not st.session_state.authenticated:
st.warning("Please authenticate using the sidebar.")
return
if st.session_state.vectorstore is None:
st.info("Please upload and process a PDF file.")
return
query = st.text_input("Enter your question:")
if st.button("Submit") and query:
with st.spinner("Generating answer..."):
try:
answer = answer_question(st.session_state.vectorstore, query)
st.session_state.history.append((query, answer))
st.write("**Answer:**", answer)
except Exception as e:
st.error(f"Error generating answer: {str(e)}")
# Process PDF and build vector store
def process_input(input_data):
os.makedirs("vectorstore", exist_ok=True)
os.chmod("vectorstore", 0o777)
progress_bar = st.progress(0)
status = st.status("Processing PDF file...", expanded=True)
status.update(label="Reading PDF file...")
progress_bar.progress(0.2)
pdf_reader = PdfReader(BytesIO(input_data.read()))
documents = "".join([page.extract_text() or "" for page in pdf_reader.pages])
status.update(label="Splitting text...")
progress_bar.progress(0.4)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
texts = text_splitter.split_text(documents)
status.update(label="Creating embeddings...")
progress_bar.progress(0.6)
hf_embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2",
model_kwargs={'device': 'cpu'}
)
status.update(label="Building vector store...")
progress_bar.progress(0.8)
dimension = len(hf_embeddings.embed_query("test"))
index = faiss.IndexFlatL2(dimension)
vector_store = FAISS(
embedding_function=hf_embeddings,
index=index,
docstore=InMemoryDocstore({}),
index_to_docstore_id={}
)
uuids = [str(uuid.uuid4()) for _ in texts]
vector_store.add_texts(texts, ids=uuids)
status.update(label="Saving vector store...")
progress_bar.progress(0.9)
vector_store.save_local("vectorstore/faiss_index")
status.update(label="Done!", state="complete")
progress_bar.progress(1.0)
return vector_store
# Answer the user's query
def answer_question(vectorstore, query):
try:
llm = HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
model_kwargs={"temperature": 0.7, "max_length": 512},
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
)
except Exception as e:
raise RuntimeError("Failed to load LLM. Check Hugging Face API key and access rights.") from e
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
prompt_template = PromptTemplate(
template="Use the context to answer the question concisely:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:",
input_variables=["context", "question"]
)
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=False,
chain_type_kwargs={"prompt": prompt_template}
)
result = qa_chain({"query": query})
return result["result"].split("Answer:")[-1].strip()
# Run the app
if __name__ == "__main__":
main()
|