deneme / relighting /inpainter.py
sakinlesh's picture
Upload 25 files
dd06d6b verified
import torch
from diffusers import ControlNetModel, AutoencoderKL
from PIL import Image
import numpy as np
import os
from tqdm.auto import tqdm
from transformers import pipeline as transformers_pipeline
from relighting.pipeline import CustomStableDiffusionControlNetInpaintPipeline
from relighting.pipeline_inpaintonly import CustomStableDiffusionInpaintPipeline, CustomStableDiffusionXLInpaintPipeline
from relighting.argument import SAMPLERS, VAE_MODELS, DEPTH_ESTIMATOR, get_control_signal_type
from relighting.image_processor import (
estimate_scene_depth,
estimate_scene_normal,
merge_normal_map,
fill_depth_circular
)
from relighting.ball_processor import get_ideal_normal_ball, crop_ball
import pickle
from relighting.pipeline_xl import CustomStableDiffusionXLControlNetInpaintPipeline
class NoWaterMark:
def apply_watermark(self, *args, **kwargs):
return args[0]
class ControlSignalGenerator():
def __init__(self, sd_arch, control_signal_type, device):
self.sd_arch = sd_arch
self.control_signal_type = control_signal_type
self.device = device
def process_sd_depth(self, input_image, normal_ball=None, mask_ball=None, x=None, y=None, r=None):
if getattr(self, 'depth_estimator', None) is None:
self.depth_estimator = transformers_pipeline("depth-estimation", device=self.device.index)
control_image = self.depth_estimator(input_image)['depth']
control_image = np.array(control_image)
control_image = control_image[:, :, None]
control_image = np.concatenate([control_image, control_image, control_image], axis=2)
control_image = Image.fromarray(control_image)
control_image = fill_depth_circular(control_image, x, y, r)
return control_image
def process_sdxl_depth(self, input_image, normal_ball=None, mask_ball=None, x=None, y=None, r=None):
if getattr(self, 'depth_estimator', None) is None:
self.depth_estimator = transformers_pipeline("depth-estimation", model=DEPTH_ESTIMATOR, device=self.device.index)
control_image = estimate_scene_depth(input_image, depth_estimator=self.depth_estimator)
xs = [x] if not isinstance(x, list) else x
ys = [y] if not isinstance(y, list) else y
rs = [r] if not isinstance(r, list) else r
for x, y, r in zip(xs, ys, rs):
#print(f"depth at {x}, {y}, {r}")
control_image = fill_depth_circular(control_image, x, y, r)
return control_image
def process_sd_normal(self, input_image, normal_ball, mask_ball, x, y, r=None, normal_ball_path=None):
if getattr(self, 'depth_estimator', None) is None:
self.depth_estimator = transformers_pipeline("depth-estimation", model=DEPTH_ESTIMATOR, device=self.device.index)
normal_scene = estimate_scene_normal(input_image, depth_estimator=self.depth_estimator)
normal_image = merge_normal_map(normal_scene, normal_ball, mask_ball, x, y)
normal_image = (normal_image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
control_image = Image.fromarray(normal_image)
return control_image
def __call__(self, *args, **kwargs):
process_fn = getattr(self, f"process_{self.sd_arch}_{self.control_signal_type}", None)
if process_fn is None:
raise ValueError
else:
return process_fn(*args, **kwargs)
class BallInpainter():
def __init__(self, pipeline, sd_arch, control_generator, disable_water_mask=True):
self.pipeline = pipeline
self.sd_arch = sd_arch
self.control_generator = control_generator
self.median = {}
if disable_water_mask:
self._disable_water_mask()
def _disable_water_mask(self):
if hasattr(self.pipeline, "watermark"):
self.pipeline.watermark = NoWaterMark()
print("Disabled watermasking")
@classmethod
def from_sd(cls,
model,
controlnet=None,
device=0,
sampler="unipc",
torch_dtype=torch.float16,
disable_water_mask=True,
offload=False
):
if controlnet is not None:
control_signal_type = get_control_signal_type(controlnet)
controlnet = ControlNetModel.from_pretrained(controlnet, torch_dtype=torch.float16)
pipe = CustomStableDiffusionControlNetInpaintPipeline.from_pretrained(
model,
controlnet=controlnet,
torch_dtype=torch_dtype,
).to(device)
control_generator = ControlSignalGenerator("sd", control_signal_type, device=device)
else:
pipe = CustomStableDiffusionInpaintPipeline.from_pretrained(
model,
torch_dtype=torch_dtype,
).to(device)
control_generator = None
try:
if torch_dtype==torch.float16 and device != torch.device("cpu"):
pipe.enable_xformers_memory_efficient_attention()
except:
pass
pipe.set_progress_bar_config(disable=True)
pipe.scheduler = SAMPLERS[sampler].from_config(pipe.scheduler.config)
return BallInpainter(pipe, "sd", control_generator, disable_water_mask)
@classmethod
def from_sdxl(cls,
model,
controlnet=None,
device=0,
sampler="unipc",
torch_dtype=torch.float16,
disable_water_mask=True,
use_fixed_vae=True,
offload=False
):
vae = VAE_MODELS["sdxl"]
vae = AutoencoderKL.from_pretrained(vae, torch_dtype=torch_dtype).to(device) if use_fixed_vae else None
extra_kwargs = {"vae": vae} if vae is not None else {}
if controlnet is not None:
control_signal_type = get_control_signal_type(controlnet)
controlnet = ControlNetModel.from_pretrained(
controlnet,
variant="fp16" if torch_dtype == torch.float16 else None,
use_safetensors=True,
torch_dtype=torch_dtype,
).to(device)
pipe = CustomStableDiffusionXLControlNetInpaintPipeline.from_pretrained(
model,
controlnet=controlnet,
variant="fp16" if torch_dtype == torch.float16 else None,
use_safetensors=True,
torch_dtype=torch_dtype,
**extra_kwargs,
).to(device)
control_generator = ControlSignalGenerator("sdxl", control_signal_type, device=device)
else:
pipe = CustomStableDiffusionXLInpaintPipeline.from_pretrained(
model,
variant="fp16" if torch_dtype == torch.float16 else None,
use_safetensors=True,
torch_dtype=torch_dtype,
**extra_kwargs,
).to(device)
control_generator = None
try:
if torch_dtype==torch.float16 and device != torch.device("cpu"):
pipe.enable_xformers_memory_efficient_attention()
except:
pass
if offload and device != torch.device("cpu"):
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=True)
pipe.scheduler = SAMPLERS[sampler].from_config(pipe.scheduler.config)
return BallInpainter(pipe, "sdxl", control_generator, disable_water_mask)
# TODO: this method should be replaced by inpaint(), but we'll leave it here for now
# otherwise, the existing experiment code will break down
def __call__(self, *args, **kwargs):
return self.pipeline(*args, **kwargs)
def _default_height_width(self, height=None, width=None):
if (height is not None) and (width is not None):
return height, width
if self.sd_arch == "sd":
return (512, 512)
elif self.sd_arch == "sdxl":
return (1024, 1024)
else:
raise NotImplementedError
# this method is for sanity check only
def get_cache_control_image(self):
control_image = getattr(self, "cache_control_image", None)
return control_image
def prepare_control_signal(self, image, controlnet_conditioning_scale, extra_kwargs):
if self.control_generator is not None:
control_image = self.control_generator(image, **extra_kwargs)
controlnet_kwargs = {
"control_image": control_image,
"controlnet_conditioning_scale": controlnet_conditioning_scale
}
self.cache_control_image = control_image
else:
controlnet_kwargs = {}
return controlnet_kwargs
def get_cache_median(self, it):
if it in self.median: return self.median[it]
else: return None
def reset_median(self):
self.median = {}
print("Reset median")
def load_median(self, path):
if os.path.exists(path):
with open(path, "rb") as f:
self.median = pickle.load(f)
print(f"Loaded median from {path}")
else:
print(f"Median not found at {path}!")
def inpaint_iterative(
self,
prompt=None,
negative_prompt="",
num_inference_steps=30,
generator=None, # TODO: remove this
image=None,
mask_image=None,
height=None,
width=None,
controlnet_conditioning_scale=0.5,
num_images_per_prompt=1,
current_seed=0,
cross_attention_kwargs={},
strength=0.8,
num_iteration=2,
ball_per_iteration=30,
agg_mode="median",
save_intermediate=True,
cache_dir="./temp_inpaint_iterative",
disable_progress=False,
prompt_embeds=None,
pooled_prompt_embeds=None,
use_cache_median=False,
guidance_scale=5.0, # In the paper, we use guidance scale to 5.0 (same as pipeline_xl.py)
**extra_kwargs,
):
def computeMedian(ball_images):
all = np.stack(ball_images, axis=0)
median = np.median(all, axis=0)
idx_median = np.argsort(all, axis=0)[all.shape[0]//2]
# print(all.shape)
# print(idx_median.shape)
return median, idx_median
def generate_balls(avg_image, current_strength, ball_per_iteration, current_iteration):
print(f"Inpainting balls for {current_iteration} iteration...")
controlnet_kwargs = self.prepare_control_signal(
image=avg_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
extra_kwargs=extra_kwargs,
)
ball_images = []
for i in tqdm(range(ball_per_iteration), disable=disable_progress):
seed = current_seed + i
new_generator = torch.Generator().manual_seed(seed)
output_image = self.pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
generator=new_generator,
image=avg_image,
mask_image=mask_image,
height=height,
width=width,
num_images_per_prompt=num_images_per_prompt,
strength=current_strength,
newx=x,
newy=y,
newr=r,
current_seed=seed,
cross_attention_kwargs=cross_attention_kwargs,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
guidance_scale=guidance_scale,
**controlnet_kwargs
).images[0]
ball_image = crop_ball(output_image, mask_ball_for_crop, x, y, r)
ball_images.append(ball_image)
if save_intermediate:
os.makedirs(os.path.join(cache_dir, str(current_iteration)), mode=0o777, exist_ok=True)
output_image.save(os.path.join(cache_dir, str(current_iteration), f"raw_{i}.png"))
Image.fromarray(ball_image).save(os.path.join(cache_dir, str(current_iteration), f"ball_{i}.png"))
# chmod 777
os.chmod(os.path.join(cache_dir, str(current_iteration), f"raw_{i}.png"), 0o0777)
os.chmod(os.path.join(cache_dir, str(current_iteration), f"ball_{i}.png"), 0o0777)
return ball_images
if save_intermediate:
os.makedirs(cache_dir, exist_ok=True)
height, width = self._default_height_width(height, width)
x = extra_kwargs["x"]
y = extra_kwargs["y"]
r = 256 if "r" not in extra_kwargs else extra_kwargs["r"]
_, mask_ball_for_crop = get_ideal_normal_ball(size=r)
# generate initial average ball
avg_image = image
ball_images = generate_balls(
avg_image,
current_strength=1.0,
ball_per_iteration=ball_per_iteration,
current_iteration=0,
)
# ball refinement loop
image = np.array(image)
for it in range(1, num_iteration+1):
if use_cache_median and (self.get_cache_median(it) is not None):
print("Use existing median")
all = np.stack(ball_images, axis=0)
idx_median = self.get_cache_median(it)
avg_ball = all[idx_median,
np.arange(idx_median.shape[0])[:, np.newaxis, np.newaxis],
np.arange(idx_median.shape[1])[np.newaxis, :, np.newaxis],
np.arange(idx_median.shape[2])[np.newaxis, np.newaxis, :]
]
else:
avg_ball, idx_median = computeMedian(ball_images)
print("Add new median")
self.median[it] = idx_median
avg_image = merge_normal_map(image, avg_ball, mask_ball_for_crop, x, y)
avg_image = Image.fromarray(avg_image.astype(np.uint8))
if save_intermediate:
avg_image.save(os.path.join(cache_dir, f"average_{it}.png"))
# chmod777
os.chmod(os.path.join(cache_dir, f"average_{it}.png"), 0o0777)
ball_images = generate_balls(
avg_image,
current_strength=strength,
ball_per_iteration=ball_per_iteration if it < num_iteration else 1,
current_iteration=it,
)
# TODO: add algorithm for select the best ball
best_ball = ball_images[0]
output_image = merge_normal_map(image, best_ball, mask_ball_for_crop, x, y)
return Image.fromarray(output_image.astype(np.uint8))
def inpaint(
self,
prompt=None,
negative_prompt=None,
num_inference_steps=30,
generator=None,
image=None,
mask_image=None,
height=None,
width=None,
controlnet_conditioning_scale=0.5,
num_images_per_prompt=1,
strength=1.0,
current_seed=0,
cross_attention_kwargs={},
prompt_embeds=None,
pooled_prompt_embeds=None,
guidance_scale=5.0, # (same as pipeline_xl.py)
**extra_kwargs,
):
height, width = self._default_height_width(height, width)
controlnet_kwargs = self.prepare_control_signal(
image=image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
extra_kwargs=extra_kwargs,
)
if generator is None:
generator = torch.Generator().manual_seed(0)
output_image = self.pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
generator=generator,
image=image,
mask_image=mask_image,
height=height,
width=width,
num_images_per_prompt=num_images_per_prompt,
strength=strength,
newx = extra_kwargs["x"],
newy = extra_kwargs["y"],
newr = getattr(extra_kwargs, "r", 256), # default to ball_size = 256
current_seed=current_seed,
cross_attention_kwargs=cross_attention_kwargs,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
guidance_scale=guidance_scale,
**controlnet_kwargs
)
return output_image