File size: 16,876 Bytes
dd06d6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import torch
from diffusers import ControlNetModel, AutoencoderKL
from PIL import Image
import numpy as np
import os
from tqdm.auto import tqdm
from transformers import pipeline as transformers_pipeline

from relighting.pipeline import CustomStableDiffusionControlNetInpaintPipeline
from relighting.pipeline_inpaintonly import CustomStableDiffusionInpaintPipeline, CustomStableDiffusionXLInpaintPipeline
from relighting.argument import SAMPLERS, VAE_MODELS, DEPTH_ESTIMATOR, get_control_signal_type
from relighting.image_processor import (
    estimate_scene_depth,
    estimate_scene_normal,
    merge_normal_map,
    fill_depth_circular
)
from relighting.ball_processor import get_ideal_normal_ball, crop_ball
import pickle

from relighting.pipeline_xl import CustomStableDiffusionXLControlNetInpaintPipeline

class NoWaterMark:
    def apply_watermark(self, *args, **kwargs):
        return args[0]

class ControlSignalGenerator():
    def __init__(self, sd_arch, control_signal_type, device):
        self.sd_arch = sd_arch
        self.control_signal_type = control_signal_type
        self.device = device

    def process_sd_depth(self, input_image, normal_ball=None, mask_ball=None, x=None, y=None, r=None):
        if getattr(self, 'depth_estimator', None) is None:
            self.depth_estimator = transformers_pipeline("depth-estimation", device=self.device.index)

        control_image = self.depth_estimator(input_image)['depth']
        control_image = np.array(control_image)
        control_image = control_image[:, :, None]
        control_image = np.concatenate([control_image, control_image, control_image], axis=2)
        control_image = Image.fromarray(control_image)
        
        control_image = fill_depth_circular(control_image, x, y, r)
        return control_image

    def process_sdxl_depth(self, input_image, normal_ball=None, mask_ball=None, x=None, y=None, r=None):
        if getattr(self, 'depth_estimator', None) is None:
            self.depth_estimator = transformers_pipeline("depth-estimation", model=DEPTH_ESTIMATOR, device=self.device.index)

        control_image = estimate_scene_depth(input_image, depth_estimator=self.depth_estimator)
        xs = [x] if not isinstance(x, list) else x
        ys = [y] if not isinstance(y, list) else y
        rs = [r] if not isinstance(r, list) else r
        
        for x, y, r in zip(xs, ys, rs):
            #print(f"depth at {x}, {y}, {r}")
            control_image = fill_depth_circular(control_image, x, y, r)
        return control_image

    def process_sd_normal(self, input_image, normal_ball, mask_ball, x, y, r=None, normal_ball_path=None):
        if getattr(self, 'depth_estimator', None) is None:
            self.depth_estimator = transformers_pipeline("depth-estimation", model=DEPTH_ESTIMATOR, device=self.device.index)

        normal_scene = estimate_scene_normal(input_image, depth_estimator=self.depth_estimator)
        normal_image = merge_normal_map(normal_scene, normal_ball, mask_ball, x, y)
        normal_image = (normal_image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
        control_image = Image.fromarray(normal_image)
        return control_image

    def __call__(self, *args, **kwargs):
        process_fn = getattr(self, f"process_{self.sd_arch}_{self.control_signal_type}", None)
        if process_fn is None:
            raise ValueError
        else:
            return process_fn(*args, **kwargs)
        

class BallInpainter():
    def __init__(self, pipeline, sd_arch, control_generator, disable_water_mask=True):
        self.pipeline = pipeline
        self.sd_arch = sd_arch
        self.control_generator = control_generator
        self.median = {}
        if disable_water_mask:
            self._disable_water_mask()

    def _disable_water_mask(self):
        if hasattr(self.pipeline, "watermark"):
            self.pipeline.watermark = NoWaterMark()
            print("Disabled watermasking")

    @classmethod
    def from_sd(cls, 
                model, 
                controlnet=None, 
                device=0, 
                sampler="unipc", 
                torch_dtype=torch.float16,
                disable_water_mask=True,
                offload=False
    ):
        if controlnet is not None:
            control_signal_type = get_control_signal_type(controlnet)
            controlnet = ControlNetModel.from_pretrained(controlnet, torch_dtype=torch.float16)
            pipe = CustomStableDiffusionControlNetInpaintPipeline.from_pretrained(
                model,
                controlnet=controlnet,
                torch_dtype=torch_dtype,
            ).to(device)
            control_generator = ControlSignalGenerator("sd", control_signal_type, device=device)
        else:
            pipe = CustomStableDiffusionInpaintPipeline.from_pretrained(
                model,
                torch_dtype=torch_dtype,
            ).to(device)
            control_generator = None
        
        try:
            if torch_dtype==torch.float16 and device != torch.device("cpu"):
                pipe.enable_xformers_memory_efficient_attention()
        except:
            pass
        pipe.set_progress_bar_config(disable=True)
        
        pipe.scheduler = SAMPLERS[sampler].from_config(pipe.scheduler.config)
        
        return BallInpainter(pipe, "sd", control_generator, disable_water_mask)

    @classmethod
    def from_sdxl(cls, 
                model, 
                controlnet=None, 
                device=0, 
                sampler="unipc", 
                torch_dtype=torch.float16,
                disable_water_mask=True,
                use_fixed_vae=True,
                offload=False
    ):
        vae = VAE_MODELS["sdxl"]
        vae = AutoencoderKL.from_pretrained(vae, torch_dtype=torch_dtype).to(device) if use_fixed_vae else None
        extra_kwargs = {"vae": vae} if vae is not None else {}
        
        if controlnet is not None:
            control_signal_type = get_control_signal_type(controlnet)
            controlnet = ControlNetModel.from_pretrained(
                controlnet,
                variant="fp16" if torch_dtype == torch.float16 else None,
                use_safetensors=True,
                torch_dtype=torch_dtype,
            ).to(device)
            pipe = CustomStableDiffusionXLControlNetInpaintPipeline.from_pretrained(
                model,
                controlnet=controlnet,
                variant="fp16" if torch_dtype == torch.float16 else None,
                use_safetensors=True,
                torch_dtype=torch_dtype,
                **extra_kwargs,
            ).to(device)
            control_generator = ControlSignalGenerator("sdxl", control_signal_type, device=device)
        else:
            pipe = CustomStableDiffusionXLInpaintPipeline.from_pretrained(
                model,
                variant="fp16" if torch_dtype == torch.float16 else None,
                use_safetensors=True,
                torch_dtype=torch_dtype,
                **extra_kwargs,
            ).to(device)
            control_generator = None
        
        try:
            if torch_dtype==torch.float16 and device != torch.device("cpu"):
                pipe.enable_xformers_memory_efficient_attention()
        except:
            pass
        
        if offload and device != torch.device("cpu"):
            pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=True)
        pipe.scheduler = SAMPLERS[sampler].from_config(pipe.scheduler.config)
        
        return BallInpainter(pipe, "sdxl", control_generator, disable_water_mask)

    # TODO: this method should be replaced by inpaint(), but we'll leave it here for now
    # otherwise, the existing experiment code will break down
    def __call__(self, *args, **kwargs):
        return self.pipeline(*args, **kwargs)

    def _default_height_width(self, height=None, width=None):
        if (height is not None) and (width is not None):
            return height, width
        if self.sd_arch == "sd":
            return (512, 512)
        elif self.sd_arch == "sdxl":
            return (1024, 1024)
        else:
            raise NotImplementedError

    # this method is for sanity check only
    def get_cache_control_image(self):
        control_image = getattr(self, "cache_control_image", None)
        return control_image

    def prepare_control_signal(self, image, controlnet_conditioning_scale, extra_kwargs):
        if self.control_generator is not None:
            control_image = self.control_generator(image, **extra_kwargs)
            controlnet_kwargs = {
                "control_image": control_image,
                "controlnet_conditioning_scale": controlnet_conditioning_scale
            }
            self.cache_control_image = control_image
        else:
            controlnet_kwargs = {}

        return controlnet_kwargs

    def get_cache_median(self, it):
        if it in self.median: return self.median[it]
        else: return None

    def reset_median(self):
        self.median = {}
        print("Reset median")

    def load_median(self, path):
        if os.path.exists(path):
            with open(path, "rb") as f:
                self.median = pickle.load(f)
                print(f"Loaded median from {path}")
        else:
            print(f"Median not found at {path}!")

    def inpaint_iterative(
        self,
        prompt=None,
        negative_prompt="",
        num_inference_steps=30,
        generator=None, # TODO: remove this
        image=None,
        mask_image=None,
        height=None,
        width=None,
        controlnet_conditioning_scale=0.5,
        num_images_per_prompt=1,
        current_seed=0,
        cross_attention_kwargs={},
        strength=0.8,
        num_iteration=2,
        ball_per_iteration=30,
        agg_mode="median",
        save_intermediate=True,
        cache_dir="./temp_inpaint_iterative",
        disable_progress=False,
        prompt_embeds=None,
        pooled_prompt_embeds=None,
        use_cache_median=False,
        guidance_scale=5.0, # In the paper, we use guidance scale to 5.0 (same as pipeline_xl.py)
        **extra_kwargs,
    ):
        def computeMedian(ball_images):
            all = np.stack(ball_images, axis=0)
            median = np.median(all, axis=0)
            idx_median = np.argsort(all, axis=0)[all.shape[0]//2]
            # print(all.shape)
            # print(idx_median.shape)
            return median, idx_median

        def generate_balls(avg_image, current_strength, ball_per_iteration, current_iteration):
            print(f"Inpainting balls for {current_iteration} iteration...")
            controlnet_kwargs = self.prepare_control_signal(
                image=avg_image,
                controlnet_conditioning_scale=controlnet_conditioning_scale,
                extra_kwargs=extra_kwargs,
            )

            ball_images = []
            for i in tqdm(range(ball_per_iteration), disable=disable_progress):
                seed = current_seed + i
                new_generator = torch.Generator().manual_seed(seed)
                output_image = self.pipeline(
                    prompt=prompt,
                    negative_prompt=negative_prompt,
                    num_inference_steps=num_inference_steps,
                    generator=new_generator,
                    image=avg_image,
                    mask_image=mask_image,
                    height=height,
                    width=width,
                    num_images_per_prompt=num_images_per_prompt,
                    strength=current_strength,
                    newx=x,
                    newy=y,
                    newr=r,
                    current_seed=seed,
                    cross_attention_kwargs=cross_attention_kwargs,
                    prompt_embeds=prompt_embeds,
                    pooled_prompt_embeds=pooled_prompt_embeds,
                    guidance_scale=guidance_scale,
                    **controlnet_kwargs
                ).images[0]
                
                ball_image = crop_ball(output_image, mask_ball_for_crop, x, y, r)
                ball_images.append(ball_image)

                if save_intermediate:
                    os.makedirs(os.path.join(cache_dir, str(current_iteration)), mode=0o777, exist_ok=True)
                    output_image.save(os.path.join(cache_dir, str(current_iteration), f"raw_{i}.png"))
                    Image.fromarray(ball_image).save(os.path.join(cache_dir, str(current_iteration), f"ball_{i}.png"))
                    # chmod 777
                    os.chmod(os.path.join(cache_dir, str(current_iteration), f"raw_{i}.png"), 0o0777)
                    os.chmod(os.path.join(cache_dir, str(current_iteration), f"ball_{i}.png"), 0o0777)

            
            return ball_images

        if save_intermediate:
            os.makedirs(cache_dir, exist_ok=True)

        height, width = self._default_height_width(height, width)

        x = extra_kwargs["x"]
        y = extra_kwargs["y"]
        r = 256  if "r" not in extra_kwargs else extra_kwargs["r"]
        _, mask_ball_for_crop = get_ideal_normal_ball(size=r)
        
        # generate initial average ball
        avg_image = image
        ball_images = generate_balls(
            avg_image,
            current_strength=1.0,
            ball_per_iteration=ball_per_iteration,
            current_iteration=0,
        )

        # ball refinement loop
        image = np.array(image)
        for it in range(1, num_iteration+1):
            if use_cache_median and (self.get_cache_median(it) is not None):
                print("Use existing median")
                all = np.stack(ball_images, axis=0)
                idx_median = self.get_cache_median(it)
                avg_ball = all[idx_median, 
                    np.arange(idx_median.shape[0])[:, np.newaxis, np.newaxis],
                    np.arange(idx_median.shape[1])[np.newaxis, :, np.newaxis],
                    np.arange(idx_median.shape[2])[np.newaxis, np.newaxis, :]
                ]
            else:
                avg_ball, idx_median = computeMedian(ball_images)
                print("Add new median")
                self.median[it] = idx_median
            
            avg_image = merge_normal_map(image, avg_ball, mask_ball_for_crop, x, y)
            avg_image = Image.fromarray(avg_image.astype(np.uint8))
            if save_intermediate:
                avg_image.save(os.path.join(cache_dir, f"average_{it}.png"))
                # chmod777
                os.chmod(os.path.join(cache_dir, f"average_{it}.png"), 0o0777)
            
            ball_images = generate_balls(
                avg_image,
                current_strength=strength,
                ball_per_iteration=ball_per_iteration if it < num_iteration else 1,
                current_iteration=it,
            )

        # TODO: add algorithm for select the best ball
        best_ball = ball_images[0]
        output_image = merge_normal_map(image, best_ball, mask_ball_for_crop, x, y)
        return Image.fromarray(output_image.astype(np.uint8))

    def inpaint(
        self,
        prompt=None,
        negative_prompt=None,
        num_inference_steps=30,
        generator=None,
        image=None,
        mask_image=None,
        height=None,
        width=None,
        controlnet_conditioning_scale=0.5,
        num_images_per_prompt=1,
        strength=1.0,
        current_seed=0,
        cross_attention_kwargs={},
        prompt_embeds=None,
        pooled_prompt_embeds=None,
        guidance_scale=5.0, # (same as pipeline_xl.py)
        **extra_kwargs,
    ):
        height, width = self._default_height_width(height, width)

        controlnet_kwargs = self.prepare_control_signal(
            image=image,
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            extra_kwargs=extra_kwargs,
        )
        
        if generator is None:
            generator = torch.Generator().manual_seed(0)

        output_image = self.pipeline(
            prompt=prompt,
            negative_prompt=negative_prompt,
            num_inference_steps=num_inference_steps,
            generator=generator,
            image=image,
            mask_image=mask_image,
            height=height,
            width=width,
            num_images_per_prompt=num_images_per_prompt,
            strength=strength,
            newx = extra_kwargs["x"],
            newy = extra_kwargs["y"],
            newr = getattr(extra_kwargs, "r", 256), # default to ball_size = 256
            current_seed=current_seed,
            cross_attention_kwargs=cross_attention_kwargs,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            guidance_scale=guidance_scale,
            **controlnet_kwargs
        )

        return output_image