ReactionT5 / app.py
sagawa's picture
Update app.py
e085437 verified
raw
history blame
6.29 kB
import gc
import os
import sys
import warnings
import pandas as pd
import streamlit as st
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
sys.path.append(
os.path.abspath(os.path.join(os.path.dirname(__file__), "task_forward"))
)
from generation_utils import (
ReactionT5Dataset,
decode_output,
save_multiple_predictions,
)
from train import preprocess_df
from utils import seed_everything
warnings.filterwarnings("ignore")
st.title("ReactionT5 task forward")
st.markdown("""
##### At this space, you can predict the products of reactions from their inputs.
##### The code expects input_data as a string or CSV file that contains an "input" column.
##### The format of the string or contents of the column should be "REACTANT:{reactants}REAGENT:{reagents}".
##### If there is no reagent, fill the blank with a space. For multiple compounds, concatenate them with ".".
##### The output contains SMILES of predicted products and the sum of log-likelihood for each prediction, ordered by their log-likelihood (0th is the most probable product).
""")
st.download_button(
label="Download demo_reaction_data.csv",
data=pd.read_csv("data/demo_reaction_data.csv").to_csv(index=False),
file_name="demo_reaction_data.csv",
mime="text/csv",
)
class CFG:
num_beams = st.number_input(
label="num beams", min_value=1, max_value=10, value=5, step=1
)
num_return_sequences = num_beams
input_data = st.file_uploader("Choose a CSV file")
model_name_or_path = "sagawa/ReactionT5v2-forward"
input_column = "input"
input_max_length = 400
output_max_length = 300
model = "t5"
seed = 42
batch_size = 1
if st.button("predict"):
with st.spinner(
"Now processing. If num beams=5, this process takes about 15 seconds per reaction."
):
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# seed_everything(seed=CFG.seed)
# tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors="pt")
# model = AutoModelForSeq2SeqLM.from_pretrained(CFG.model_name_or_path).to(device)
# model.eval()
# if CFG.uploaded_file is None:
# input_compound = CFG.input_data
# output = predict_single_input(input_compound)
# sequences, scores = decode_output(output)
# output_df = save_single_prediction(input_compound, sequences, scores)
# else:
# input_data = pd.read_csv(CFG.uploaded_file)
# dataset = ProductDataset(CFG, input_data)
# dataloader = DataLoader(
# dataset,
# batch_size=CFG.batch_size,
# shuffle=False,
# num_workers=4,
# pin_memory=True,
# drop_last=False,
# )
# all_sequences, all_scores = [], []
# for inputs in dataloader:
# inputs = {k: v[0].to(device) for k, v in inputs.items()}
# with torch.no_grad():
# output = model.generate(
# **inputs,
# num_beams=CFG.num_beams,
# num_return_sequences=CFG.num_return_sequences,
# return_dict_in_generate=True,
# output_scores=True,
# )
# sequences, scores = decode_output(output)
# all_sequences.extend(sequences)
# if scores:
# all_scores.extend(scores)
# del output
# torch.cuda.empty_cache()
# gc.collect()
# output_df = save_multiple_predictions(input_data, all_sequences, all_scores)
CFG.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if not os.path.exists(CFG.output_dir):
os.makedirs(CFG.output_dir)
seed_everything(seed=CFG.seed)
CFG.tokenizer = AutoTokenizer.from_pretrained(
os.path.abspath(CFG.model_name_or_path)
if os.path.exists(CFG.model_name_or_path)
else CFG.model_name_or_path,
return_tensors="pt",
)
model = AutoModelForSeq2SeqLM.from_pretrained(
os.path.abspath(CFG.model_name_or_path)
if os.path.exists(CFG.model_name_or_path)
else CFG.model_name_or_path
).to(CFG.device)
model.eval()
input_data = pd.read_csv(CFG.input_data)
input_data = preprocess_df(input_data, drop_duplicates=False)
dataset = ReactionT5Dataset(CFG, input_data)
dataloader = DataLoader(
dataset,
batch_size=CFG.batch_size,
shuffle=False,
num_workers=4,
pin_memory=True,
drop_last=False,
)
all_sequences, all_scores = [], []
for inputs in tqdm(dataloader, total=len(dataloader)):
inputs = {k: v.to(CFG.device) for k, v in inputs.items()}
with torch.no_grad():
output = model.generate(
**inputs,
min_length=CFG.output_min_length,
max_length=CFG.output_max_length,
num_beams=CFG.num_beams,
num_return_sequences=CFG.num_return_sequences,
return_dict_in_generate=True,
output_scores=True,
)
sequences, scores = decode_output(output, CFG)
all_sequences.extend(sequences)
if scores:
all_scores.extend(scores)
del output
torch.cuda.empty_cache()
gc.collect()
output_df = save_multiple_predictions(
input_data, all_sequences, all_scores, CFG
)
# output_df.to_csv(os.path.join(CFG.output_dir, "output.csv"), index=False)
@st.cache
def convert_df(df):
return df.to_csv(index=False)
csv = convert_df(output_df)
st.download_button(
label="Download data as CSV",
data=csv,
file_name="output.csv",
mime="text/csv",
)