Spaces:
Sleeping
Sleeping
import torch | |
import librosa | |
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration | |
from gtts import gTTS | |
import gradio as gr | |
import spaces | |
from langdetect import detect | |
print("Using GPU for operations when available") | |
# Function to safely load pipeline within a GPU-decorated function | |
def load_pipeline(model_name, **kwargs): | |
try: | |
device = 0 if torch.cuda.is_available() else "cpu" | |
return pipeline(model=model_name, device=device, **kwargs) | |
except Exception as e: | |
print(f"Error loading {model_name} pipeline: {e}") | |
return None | |
# Load Whisper model for speech recognition within a GPU-decorated function | |
def load_whisper(): | |
try: | |
device = 0 if torch.cuda.is_available() else "cpu" | |
processor = WhisperProcessor.from_pretrained("openai/whisper-small") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device) | |
return processor, model | |
except Exception as e: | |
print(f"Error loading Whisper model: {e}") | |
return None, None | |
# Load sarvam-2b for text generation within a GPU-decorated function | |
def load_sarvam(): | |
return load_pipeline('sarvamai/sarvam-2b-v0.5') | |
# Process audio input within a GPU-decorated function | |
def process_audio_input(audio, whisper_processor, whisper_model): | |
if whisper_processor is None or whisper_model is None: | |
return "Error: Speech recognition model is not available. Please type your message instead." | |
try: | |
audio, sr = librosa.load(audio, sr=16000) | |
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device) | |
predicted_ids = whisper_model.generate(input_features) | |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] | |
return transcription | |
except Exception as e: | |
return f"Error processing audio: {str(e)}. Please type your message instead." | |
# Generate response within a GPU-decorated function | |
def generate_response(transcription, sarvam_pipe): | |
if sarvam_pipe is None: | |
return "Error: Text generation model is not available." | |
try: | |
# Prepare the prompt | |
prompt = f"Human: {transcription}\n\nAssistant:" | |
# Generate response using the sarvam-2b model | |
response = sarvam_pipe(prompt, max_length=200, num_return_sequences=1, do_sample=True, temperature=0.7)[0]['generated_text'] | |
# Extract the assistant's response | |
assistant_response = response.split("Assistant:")[-1].strip() | |
return assistant_response | |
except Exception as e: | |
return f"Error generating response: {str(e)}" | |
# Text-to-speech function | |
def text_to_speech(text, lang='hi'): | |
try: | |
# Use a better TTS engine for Indic languages | |
if lang in ['hi', 'bn', 'gu', 'kn', 'ml', 'mr', 'or', 'pa', 'ta', 'te']: | |
tts = gTTS(text=text, lang=lang, tld='co.in') # Use Indian TLD | |
else: | |
tts = gTTS(text=text, lang=lang) | |
tts.save("response.mp3") | |
return "response.mp3" | |
except Exception as e: | |
print(f"Error in text-to-speech: {str(e)}") | |
return None | |
# Language detection function | |
def detect_language(text): | |
lang_codes = { | |
'bn': 'Bengali', 'gu': 'Gujarati', 'hi': 'Hindi', 'kn': 'Kannada', | |
'ml': 'Malayalam', 'mr': 'Marathi', 'or': 'Oriya', 'pa': 'Punjabi', | |
'ta': 'Tamil', 'te': 'Telugu', 'en': 'English' | |
} | |
try: | |
detected_lang = detect(text) | |
return detected_lang if detected_lang in lang_codes else 'en' | |
except: | |
# Fallback to simple script-based detection | |
for code, lang in lang_codes.items(): | |
if any(ord(char) >= 0x0900 and ord(char) <= 0x097F for char in text): # Devanagari script | |
return 'hi' | |
return 'en' # Default to English if no Indic script is detected | |
def indic_language_assistant(input_type, audio_input, text_input): | |
try: | |
# Load models within the GPU-decorated function | |
whisper_processor, whisper_model = load_whisper() | |
sarvam_pipe = load_sarvam() | |
if input_type == "audio" and audio_input is not None: | |
transcription = process_audio_input(audio_input, whisper_processor, whisper_model) | |
elif input_type == "text" and text_input: | |
transcription = text_input | |
else: | |
return "Please provide either audio or text input.", "No input provided.", None | |
response = generate_response(transcription, sarvam_pipe) | |
lang = detect_language(response) | |
audio_response = text_to_speech(response, lang) | |
return transcription, response, audio_response | |
except Exception as e: | |
error_message = f"An error occurred: {str(e)}" | |
return error_message, error_message, None | |
# Custom CSS | |
custom_css = """ | |
body { | |
background-color: #1a1a1a; | |
color: #ffffff; | |
font-family: Arial, sans-serif; | |
} | |
.container { | |
max-width: 800px; | |
margin: 0 auto; | |
padding: 20px; | |
} | |
h1 { | |
font-size: 2.5em; | |
background: linear-gradient(45deg, #4a90e2, #f48fb1); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
margin-bottom: 10px; | |
} | |
h2 { | |
color: #a0a0a0; | |
font-weight: normal; | |
} | |
.task-container { | |
display: flex; | |
justify-content: space-between; | |
flex-wrap: wrap; | |
margin-top: 30px; | |
} | |
.task-card { | |
background-color: #2a2a2a; | |
border-radius: 10px; | |
padding: 15px; | |
margin: 10px 0; | |
width: calc(50% - 10px); | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
transition: transform 0.3s ease; | |
} | |
.task-card:hover { | |
transform: translateY(-5px); | |
} | |
.task-icon { | |
font-size: 24px; | |
margin-bottom: 10px; | |
} | |
.input-box { | |
width: 100%; | |
padding: 10px; | |
border-radius: 20px; | |
border: none; | |
background-color: #333; | |
color: #fff; | |
margin-top: 20px; | |
} | |
.submit-btn { | |
background-color: #4a90e2; | |
color: white; | |
border: none; | |
padding: 10px 20px; | |
border-radius: 20px; | |
cursor: pointer; | |
margin-top: 10px; | |
transition: background-color 0.3s ease; | |
} | |
.submit-btn:hover { | |
background-color: #3a7bd5; | |
} | |
""" | |
# Custom HTML | |
custom_html = """ | |
<div class="container"> | |
<h1>Hello, User</h1> | |
<h2>How can I help you today?</h2> | |
<div class="task-container"> | |
<div class="task-card"> | |
<div class="task-icon">🎤</div> | |
<p>Speak in any Indic language</p> | |
</div> | |
<div class="task-card"> | |
<div class="task-icon">⌨️</div> | |
<p>Type in any Indic language</p> | |
</div> | |
</div> | |
</div> | |
""" | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=indic_language_assistant, | |
inputs=[ | |
gr.Radio(["audio", "text"], label="Input Type", value="audio"), | |
gr.Audio(type="filepath", label="Speak (if audio input selected)"), | |
gr.Textbox(label="Type your message (if text input selected)", elem_classes="input-box") | |
], | |
outputs=[ | |
gr.Textbox(label="Transcription/Input"), | |
gr.Textbox(label="Generated Response"), | |
gr.Audio(label="Audio Response") | |
], | |
title="Indic Language Virtual Assistant", | |
description="Speak or type in any supported Indic language or English. The assistant will respond in text and audio.", | |
css=custom_css, | |
elem_id="indic-assistant", | |
theme="dark" | |
) | |
# Launch the app | |
iface.launch() |