shuka_audio / app.py
sagar007's picture
Update app.py
e3a075e verified
raw
history blame
7.56 kB
import torch
import librosa
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration
from gtts import gTTS
import gradio as gr
import spaces
from langdetect import detect
print("Using GPU for operations when available")
# Function to safely load pipeline within a GPU-decorated function
@spaces.GPU
def load_pipeline(model_name, **kwargs):
try:
device = 0 if torch.cuda.is_available() else "cpu"
return pipeline(model=model_name, device=device, **kwargs)
except Exception as e:
print(f"Error loading {model_name} pipeline: {e}")
return None
# Load Whisper model for speech recognition within a GPU-decorated function
@spaces.GPU
def load_whisper():
try:
device = 0 if torch.cuda.is_available() else "cpu"
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
return processor, model
except Exception as e:
print(f"Error loading Whisper model: {e}")
return None, None
# Load sarvam-2b for text generation within a GPU-decorated function
@spaces.GPU
def load_sarvam():
return load_pipeline('sarvamai/sarvam-2b-v0.5')
# Process audio input within a GPU-decorated function
@spaces.GPU
def process_audio_input(audio, whisper_processor, whisper_model):
if whisper_processor is None or whisper_model is None:
return "Error: Speech recognition model is not available. Please type your message instead."
try:
audio, sr = librosa.load(audio, sr=16000)
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device)
predicted_ids = whisper_model.generate(input_features)
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription
except Exception as e:
return f"Error processing audio: {str(e)}. Please type your message instead."
# Generate response within a GPU-decorated function
@spaces.GPU
def generate_response(transcription, sarvam_pipe):
if sarvam_pipe is None:
return "Error: Text generation model is not available."
try:
# Prepare the prompt
prompt = f"Human: {transcription}\n\nAssistant:"
# Generate response using the sarvam-2b model
response = sarvam_pipe(prompt, max_length=200, num_return_sequences=1, do_sample=True, temperature=0.7)[0]['generated_text']
# Extract the assistant's response
assistant_response = response.split("Assistant:")[-1].strip()
return assistant_response
except Exception as e:
return f"Error generating response: {str(e)}"
# Text-to-speech function
def text_to_speech(text, lang='hi'):
try:
# Use a better TTS engine for Indic languages
if lang in ['hi', 'bn', 'gu', 'kn', 'ml', 'mr', 'or', 'pa', 'ta', 'te']:
tts = gTTS(text=text, lang=lang, tld='co.in') # Use Indian TLD
else:
tts = gTTS(text=text, lang=lang)
tts.save("response.mp3")
return "response.mp3"
except Exception as e:
print(f"Error in text-to-speech: {str(e)}")
return None
# Language detection function
def detect_language(text):
lang_codes = {
'bn': 'Bengali', 'gu': 'Gujarati', 'hi': 'Hindi', 'kn': 'Kannada',
'ml': 'Malayalam', 'mr': 'Marathi', 'or': 'Oriya', 'pa': 'Punjabi',
'ta': 'Tamil', 'te': 'Telugu', 'en': 'English'
}
try:
detected_lang = detect(text)
return detected_lang if detected_lang in lang_codes else 'en'
except:
# Fallback to simple script-based detection
for code, lang in lang_codes.items():
if any(ord(char) >= 0x0900 and ord(char) <= 0x097F for char in text): # Devanagari script
return 'hi'
return 'en' # Default to English if no Indic script is detected
@spaces.GPU
def indic_language_assistant(input_type, audio_input, text_input):
try:
# Load models within the GPU-decorated function
whisper_processor, whisper_model = load_whisper()
sarvam_pipe = load_sarvam()
if input_type == "audio" and audio_input is not None:
transcription = process_audio_input(audio_input, whisper_processor, whisper_model)
elif input_type == "text" and text_input:
transcription = text_input
else:
return "Please provide either audio or text input.", "No input provided.", None
response = generate_response(transcription, sarvam_pipe)
lang = detect_language(response)
audio_response = text_to_speech(response, lang)
return transcription, response, audio_response
except Exception as e:
error_message = f"An error occurred: {str(e)}"
return error_message, error_message, None
# Custom CSS
custom_css = """
body {
background-color: #1a1a1a;
color: #ffffff;
font-family: Arial, sans-serif;
}
.container {
max-width: 800px;
margin: 0 auto;
padding: 20px;
}
h1 {
font-size: 2.5em;
background: linear-gradient(45deg, #4a90e2, #f48fb1);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin-bottom: 10px;
}
h2 {
color: #a0a0a0;
font-weight: normal;
}
.task-container {
display: flex;
justify-content: space-between;
flex-wrap: wrap;
margin-top: 30px;
}
.task-card {
background-color: #2a2a2a;
border-radius: 10px;
padding: 15px;
margin: 10px 0;
width: calc(50% - 10px);
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
transition: transform 0.3s ease;
}
.task-card:hover {
transform: translateY(-5px);
}
.task-icon {
font-size: 24px;
margin-bottom: 10px;
}
.input-box {
width: 100%;
padding: 10px;
border-radius: 20px;
border: none;
background-color: #333;
color: #fff;
margin-top: 20px;
}
.submit-btn {
background-color: #4a90e2;
color: white;
border: none;
padding: 10px 20px;
border-radius: 20px;
cursor: pointer;
margin-top: 10px;
transition: background-color 0.3s ease;
}
.submit-btn:hover {
background-color: #3a7bd5;
}
"""
# Custom HTML
custom_html = """
<div class="container">
<h1>Hello, User</h1>
<h2>How can I help you today?</h2>
<div class="task-container">
<div class="task-card">
<div class="task-icon">🎤</div>
<p>Speak in any Indic language</p>
</div>
<div class="task-card">
<div class="task-icon">⌨️</div>
<p>Type in any Indic language</p>
</div>
</div>
</div>
"""
# Create Gradio interface
iface = gr.Interface(
fn=indic_language_assistant,
inputs=[
gr.Radio(["audio", "text"], label="Input Type", value="audio"),
gr.Audio(type="filepath", label="Speak (if audio input selected)"),
gr.Textbox(label="Type your message (if text input selected)", elem_classes="input-box")
],
outputs=[
gr.Textbox(label="Transcription/Input"),
gr.Textbox(label="Generated Response"),
gr.Audio(label="Audio Response")
],
title="Indic Language Virtual Assistant",
description="Speak or type in any supported Indic language or English. The assistant will respond in text and audio.",
css=custom_css,
elem_id="indic-assistant",
theme="dark"
)
# Launch the app
iface.launch()