Spaces:
Sleeping
Sleeping
File size: 7,562 Bytes
649867e 5c15933 649867e 1bcb93f aad2393 e3a075e 68b4319 aad2393 649867e aad2393 68b4319 c14fb36 68b4319 1bcb93f aad2393 649867e 038b3e7 c14fb36 649867e c14fb36 649867e 038b3e7 649867e 1bcb93f aad2393 68b4319 649867e 68b4319 aad2393 649867e 68b4319 038b3e7 c14fb36 649867e 038b3e7 1bcb93f aad2393 e3a075e 1bcb93f 038b3e7 a5504a1 038b3e7 1bcb93f e3a075e 1bcb93f a5504a1 1bcb93f aad2393 038b3e7 68b4319 aad2393 038b3e7 aad2393 038b3e7 aad2393 68b4319 e3a075e 1bcb93f 416ddd3 1bcb93f 038b3e7 c14fb36 e3a075e 038b3e7 1bcb93f 038b3e7 1bcb93f 416ddd3 1bcb93f e3a075e 416ddd3 5c15933 416ddd3 aad2393 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import torch
import librosa
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration
from gtts import gTTS
import gradio as gr
import spaces
from langdetect import detect
print("Using GPU for operations when available")
# Function to safely load pipeline within a GPU-decorated function
@spaces.GPU
def load_pipeline(model_name, **kwargs):
try:
device = 0 if torch.cuda.is_available() else "cpu"
return pipeline(model=model_name, device=device, **kwargs)
except Exception as e:
print(f"Error loading {model_name} pipeline: {e}")
return None
# Load Whisper model for speech recognition within a GPU-decorated function
@spaces.GPU
def load_whisper():
try:
device = 0 if torch.cuda.is_available() else "cpu"
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
return processor, model
except Exception as e:
print(f"Error loading Whisper model: {e}")
return None, None
# Load sarvam-2b for text generation within a GPU-decorated function
@spaces.GPU
def load_sarvam():
return load_pipeline('sarvamai/sarvam-2b-v0.5')
# Process audio input within a GPU-decorated function
@spaces.GPU
def process_audio_input(audio, whisper_processor, whisper_model):
if whisper_processor is None or whisper_model is None:
return "Error: Speech recognition model is not available. Please type your message instead."
try:
audio, sr = librosa.load(audio, sr=16000)
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device)
predicted_ids = whisper_model.generate(input_features)
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription
except Exception as e:
return f"Error processing audio: {str(e)}. Please type your message instead."
# Generate response within a GPU-decorated function
@spaces.GPU
def generate_response(transcription, sarvam_pipe):
if sarvam_pipe is None:
return "Error: Text generation model is not available."
try:
# Prepare the prompt
prompt = f"Human: {transcription}\n\nAssistant:"
# Generate response using the sarvam-2b model
response = sarvam_pipe(prompt, max_length=200, num_return_sequences=1, do_sample=True, temperature=0.7)[0]['generated_text']
# Extract the assistant's response
assistant_response = response.split("Assistant:")[-1].strip()
return assistant_response
except Exception as e:
return f"Error generating response: {str(e)}"
# Text-to-speech function
def text_to_speech(text, lang='hi'):
try:
# Use a better TTS engine for Indic languages
if lang in ['hi', 'bn', 'gu', 'kn', 'ml', 'mr', 'or', 'pa', 'ta', 'te']:
tts = gTTS(text=text, lang=lang, tld='co.in') # Use Indian TLD
else:
tts = gTTS(text=text, lang=lang)
tts.save("response.mp3")
return "response.mp3"
except Exception as e:
print(f"Error in text-to-speech: {str(e)}")
return None
# Language detection function
def detect_language(text):
lang_codes = {
'bn': 'Bengali', 'gu': 'Gujarati', 'hi': 'Hindi', 'kn': 'Kannada',
'ml': 'Malayalam', 'mr': 'Marathi', 'or': 'Oriya', 'pa': 'Punjabi',
'ta': 'Tamil', 'te': 'Telugu', 'en': 'English'
}
try:
detected_lang = detect(text)
return detected_lang if detected_lang in lang_codes else 'en'
except:
# Fallback to simple script-based detection
for code, lang in lang_codes.items():
if any(ord(char) >= 0x0900 and ord(char) <= 0x097F for char in text): # Devanagari script
return 'hi'
return 'en' # Default to English if no Indic script is detected
@spaces.GPU
def indic_language_assistant(input_type, audio_input, text_input):
try:
# Load models within the GPU-decorated function
whisper_processor, whisper_model = load_whisper()
sarvam_pipe = load_sarvam()
if input_type == "audio" and audio_input is not None:
transcription = process_audio_input(audio_input, whisper_processor, whisper_model)
elif input_type == "text" and text_input:
transcription = text_input
else:
return "Please provide either audio or text input.", "No input provided.", None
response = generate_response(transcription, sarvam_pipe)
lang = detect_language(response)
audio_response = text_to_speech(response, lang)
return transcription, response, audio_response
except Exception as e:
error_message = f"An error occurred: {str(e)}"
return error_message, error_message, None
# Custom CSS
custom_css = """
body {
background-color: #1a1a1a;
color: #ffffff;
font-family: Arial, sans-serif;
}
.container {
max-width: 800px;
margin: 0 auto;
padding: 20px;
}
h1 {
font-size: 2.5em;
background: linear-gradient(45deg, #4a90e2, #f48fb1);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin-bottom: 10px;
}
h2 {
color: #a0a0a0;
font-weight: normal;
}
.task-container {
display: flex;
justify-content: space-between;
flex-wrap: wrap;
margin-top: 30px;
}
.task-card {
background-color: #2a2a2a;
border-radius: 10px;
padding: 15px;
margin: 10px 0;
width: calc(50% - 10px);
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
transition: transform 0.3s ease;
}
.task-card:hover {
transform: translateY(-5px);
}
.task-icon {
font-size: 24px;
margin-bottom: 10px;
}
.input-box {
width: 100%;
padding: 10px;
border-radius: 20px;
border: none;
background-color: #333;
color: #fff;
margin-top: 20px;
}
.submit-btn {
background-color: #4a90e2;
color: white;
border: none;
padding: 10px 20px;
border-radius: 20px;
cursor: pointer;
margin-top: 10px;
transition: background-color 0.3s ease;
}
.submit-btn:hover {
background-color: #3a7bd5;
}
"""
# Custom HTML
custom_html = """
<div class="container">
<h1>Hello, User</h1>
<h2>How can I help you today?</h2>
<div class="task-container">
<div class="task-card">
<div class="task-icon">🎤</div>
<p>Speak in any Indic language</p>
</div>
<div class="task-card">
<div class="task-icon">⌨️</div>
<p>Type in any Indic language</p>
</div>
</div>
</div>
"""
# Create Gradio interface
iface = gr.Interface(
fn=indic_language_assistant,
inputs=[
gr.Radio(["audio", "text"], label="Input Type", value="audio"),
gr.Audio(type="filepath", label="Speak (if audio input selected)"),
gr.Textbox(label="Type your message (if text input selected)", elem_classes="input-box")
],
outputs=[
gr.Textbox(label="Transcription/Input"),
gr.Textbox(label="Generated Response"),
gr.Audio(label="Audio Response")
],
title="Indic Language Virtual Assistant",
description="Speak or type in any supported Indic language or English. The assistant will respond in text and audio.",
css=custom_css,
elem_id="indic-assistant",
theme="dark"
)
# Launch the app
iface.launch() |