shuka_audio / app.py
sagar007's picture
Update app.py
02867d1 verified
raw
history blame
9.24 kB
import torch
import librosa
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration
from gtts import gTTS
import gradio as gr
import spaces
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
print("Using GPU for operations when available")
# Function to safely load pipeline within a GPU-decorated function
@spaces.GPU
def load_pipeline(model_name, **kwargs):
try:
device = 0 if torch.cuda.is_available() else "cpu"
logger.info(f"Loading {model_name} on device: {device}")
return pipeline(model=model_name, device=device, **kwargs)
except Exception as e:
logger.error(f"Error loading {model_name} pipeline: {e}")
return None
# Load Whisper model for speech recognition within a GPU-decorated function
@spaces.GPU
def load_whisper():
try:
device = 0 if torch.cuda.is_available() else "cpu"
logger.info(f"Loading Whisper model on device: {device}")
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
return processor, model
except Exception as e:
logger.error(f"Error loading Whisper model: {e}")
return None, None
# Load sarvam-2b for text generation within a GPU-decorated function
@spaces.GPU
def load_sarvam():
logger.info("Loading sarvam-2b model")
return load_pipeline('sarvamai/sarvam-2b-v0.5')
# Global variables for models
whisper_processor, whisper_model = load_whisper()
sarvam_pipe = load_sarvam()
# Check if models are loaded
if whisper_processor is None or whisper_model is None:
logger.error("Whisper model failed to load")
if sarvam_pipe is None:
logger.error("Sarvam model failed to load")
# Process audio input within a GPU-decorated function
@spaces.GPU
def process_audio_input(audio, whisper_processor, whisper_model):
if whisper_processor is None or whisper_model is None:
return "Error: Speech recognition model is not available. Please type your message instead."
try:
audio, sr = librosa.load(audio, sr=16000)
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device)
predicted_ids = whisper_model.generate(input_features)
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription
except Exception as e:
return f"Error processing audio: {str(e)}. Please type your message instead."
# Generate response within a GPU-decorated function
@spaces.GPU
def generate_response(transcription, sarvam_pipe):
if sarvam_pipe is None:
return "Error: Text generation model is not available."
try:
# Prepare the prompt
prompt = f"Human: {transcription}\n\nAssistant:"
# Generate response using the sarvam-2b model
response = sarvam_pipe(prompt, max_length=200, num_return_sequences=1, do_sample=True, temperature=0.7)[0]['generated_text']
# Extract the assistant's response
assistant_response = response.split("Assistant:")[-1].strip()
return assistant_response
except Exception as e:
return f"Error generating response: {str(e)}"
# Text-to-speech function
def text_to_speech(text, lang='hi'):
try:
# Use a better TTS engine for Indic languages
if lang in ['hi', 'bn', 'gu', 'kn', 'ml', 'mr', 'or', 'pa', 'ta', 'te']:
tts = gTTS(text=text, lang=lang, tld='co.in') # Use Indian TLD
else:
tts = gTTS(text=text, lang=lang)
tts.save("response.mp3")
return "response.mp3"
except Exception as e:
print(f"Error in text-to-speech: {str(e)}")
return None
# Language detection function
def detect_language(text):
lang_codes = {
'bn': 'Bengali', 'gu': 'Gujarati', 'hi': 'Hindi', 'kn': 'Kannada',
'ml': 'Malayalam', 'mr': 'Marathi', 'or': 'Oriya', 'pa': 'Punjabi',
'ta': 'Tamil', 'te': 'Telugu', 'en': 'English'
}
try:
detected_lang = detect(text)
return detected_lang if detected_lang in lang_codes else 'en'
except:
# Fallback to simple script-based detection
for code, lang in lang_codes.items():
if any(ord(char) >= 0x0900 and ord(char) <= 0x097F for char in text): # Devanagari script
return 'hi'
return 'en' # Default to English if no Indic script is detected
@spaces.GPU
def indic_language_assistant(input_type, audio_input, text_input):
try:
if input_type == "audio" and audio_input is not None:
if whisper_processor is None or whisper_model is None:
return "Error: Speech recognition model is not available.", "", None
transcription = process_audio_input(audio_input, whisper_processor, whisper_model)
elif input_type == "text" and text_input:
transcription = text_input
else:
return "Please provide either audio or text input.", "", None
if sarvam_pipe is None:
return transcription, "Error: Text generation model is not available.", None
response = generate_response(transcription, sarvam_pipe)
lang = detect_language(response)
audio_response = text_to_speech(response, lang)
return transcription, response, audio_response
except Exception as e:
logger.error(f"An error occurred in indic_language_assistant: {str(e)}")
return str(e), "An error occurred while processing your request.", None
# Updated Custom CSS
custom_css = """
body {
background-color: #0b0f19;
color: #e2e8f0;
font-family: 'Arial', sans-serif;
}
#custom-header {
text-align: center;
padding: 20px 0;
background-color: #1a202c;
margin-bottom: 20px;
border-radius: 10px;
}
#custom-header h1 {
font-size: 2.5rem;
margin-bottom: 0.5rem;
}
#custom-header h1 .blue {
color: #60a5fa;
}
#custom-header h1 .pink {
color: #f472b6;
}
#custom-header h2 {
font-size: 1.5rem;
color: #94a3b8;
}
.suggestions {
display: flex;
justify-content: center;
flex-wrap: wrap;
gap: 1rem;
margin: 20px 0;
}
.suggestion {
background-color: #1e293b;
border-radius: 0.5rem;
padding: 1rem;
display: flex;
align-items: center;
transition: transform 0.3s ease;
width: 200px;
}
.suggestion:hover {
transform: translateY(-5px);
}
.suggestion-icon {
font-size: 1.5rem;
margin-right: 1rem;
background-color: #2d3748;
padding: 0.5rem;
border-radius: 50%;
}
.gradio-container {
max-width: 100% !important;
}
#component-0, #component-1, #component-2 {
max-width: 100% !important;
}
footer {
text-align: center;
margin-top: 2rem;
color: #64748b;
}
"""
# Custom HTML for the header
custom_header = """
<div id="custom-header">
<h1>
<span class="blue">Hello,</span>
<span class="pink">User</span>
</h1>
<h2>How can I help you today?</h2>
</div>
"""
# Custom HTML for suggestions
custom_suggestions = """
<div class="suggestions">
<div class="suggestion">
<span class="suggestion-icon">🎤</span>
<p>Speak in any Indic language</p>
</div>
<div class="suggestion">
<span class="suggestion-icon">⌨️</span>
<p>Type in any Indic language</p>
</div>
<div class="suggestion">
<span class="suggestion-icon">🤖</span>
<p>Get AI-generated responses</p>
</div>
<div class="suggestion">
<span class="suggestion-icon">🔊</span>
<p>Listen to audio responses</p>
</div>
</div>
"""
# Create Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
body_background_fill="#0b0f19",
body_text_color="#e2e8f0",
button_primary_background_fill="#3b82f6",
button_primary_background_fill_hover="#2563eb",
button_primary_text_color="white",
block_title_text_color="#94a3b8",
block_label_text_color="#94a3b8",
)) as iface:
gr.HTML(custom_header)
gr.HTML(custom_suggestions)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Indic Assistant")
with gr.Column(scale=1, min_width=100):
gr.Button("Try Advanced Features", size="sm")
input_type = gr.Radio(["audio", "text"], label="Input Type", value="audio")
audio_input = gr.Audio(type="filepath", label="Speak (if audio input selected)")
text_input = gr.Textbox(label="Type your message (if text input selected)")
submit_btn = gr.Button("Submit")
output_transcription = gr.Textbox(label="Transcription/Input")
output_response = gr.Textbox(label="Generated Response")
output_audio = gr.Audio(label="Audio Response")
submit_btn.click(
fn=indic_language_assistant,
inputs=[input_type, audio_input, text_input],
outputs=[output_transcription, output_response, output_audio]
)
gr.HTML("<footer>Powered by Indic Language AI</footer>")
# Launch the app
iface.launch()