Spaces:
Sleeping
Sleeping
File size: 9,240 Bytes
649867e 5c15933 649867e 1bcb93f aad2393 f987291 02867d1 68b4319 aad2393 649867e aad2393 68b4319 c14fb36 40cb901 c14fb36 68b4319 40cb901 68b4319 1bcb93f aad2393 649867e 038b3e7 c14fb36 40cb901 649867e c14fb36 649867e 038b3e7 40cb901 649867e 1bcb93f aad2393 68b4319 40cb901 649867e 68b4319 40cb901 aad2393 649867e 68b4319 038b3e7 c14fb36 649867e 038b3e7 1bcb93f aad2393 e3a075e 1bcb93f 038b3e7 a5504a1 038b3e7 1bcb93f e3a075e 1bcb93f a5504a1 1bcb93f aad2393 038b3e7 68b4319 038b3e7 40cb901 aad2393 038b3e7 40cb901 038b3e7 aad2393 68b4319 40cb901 36d40ea 3ebd962 e3a075e 3ebd962 64a205f 3ebd962 e3a075e 7fdd2c5 e3a075e 7fdd2c5 3ebd962 64a205f e3a075e 7fdd2c5 3ebd962 16a3f05 7fdd2c5 3ebd962 e3a075e 7fdd2c5 64a205f 3ebd962 e3a075e 64a205f 7fdd2c5 64a205f 7fdd2c5 64a205f 3ebd962 64a205f 3ebd962 7fdd2c5 3ebd962 64a205f 3ebd962 64a205f 3ebd962 64a205f 7fdd2c5 64a205f 3ebd962 e3a075e 7fdd2c5 e3a075e 7fdd2c5 64a205f 7fdd2c5 5c15933 416ddd3 a703b55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import torch
import librosa
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration
from gtts import gTTS
import gradio as gr
import spaces
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
print("Using GPU for operations when available")
# Function to safely load pipeline within a GPU-decorated function
@spaces.GPU
def load_pipeline(model_name, **kwargs):
try:
device = 0 if torch.cuda.is_available() else "cpu"
logger.info(f"Loading {model_name} on device: {device}")
return pipeline(model=model_name, device=device, **kwargs)
except Exception as e:
logger.error(f"Error loading {model_name} pipeline: {e}")
return None
# Load Whisper model for speech recognition within a GPU-decorated function
@spaces.GPU
def load_whisper():
try:
device = 0 if torch.cuda.is_available() else "cpu"
logger.info(f"Loading Whisper model on device: {device}")
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
return processor, model
except Exception as e:
logger.error(f"Error loading Whisper model: {e}")
return None, None
# Load sarvam-2b for text generation within a GPU-decorated function
@spaces.GPU
def load_sarvam():
logger.info("Loading sarvam-2b model")
return load_pipeline('sarvamai/sarvam-2b-v0.5')
# Global variables for models
whisper_processor, whisper_model = load_whisper()
sarvam_pipe = load_sarvam()
# Check if models are loaded
if whisper_processor is None or whisper_model is None:
logger.error("Whisper model failed to load")
if sarvam_pipe is None:
logger.error("Sarvam model failed to load")
# Process audio input within a GPU-decorated function
@spaces.GPU
def process_audio_input(audio, whisper_processor, whisper_model):
if whisper_processor is None or whisper_model is None:
return "Error: Speech recognition model is not available. Please type your message instead."
try:
audio, sr = librosa.load(audio, sr=16000)
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device)
predicted_ids = whisper_model.generate(input_features)
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription
except Exception as e:
return f"Error processing audio: {str(e)}. Please type your message instead."
# Generate response within a GPU-decorated function
@spaces.GPU
def generate_response(transcription, sarvam_pipe):
if sarvam_pipe is None:
return "Error: Text generation model is not available."
try:
# Prepare the prompt
prompt = f"Human: {transcription}\n\nAssistant:"
# Generate response using the sarvam-2b model
response = sarvam_pipe(prompt, max_length=200, num_return_sequences=1, do_sample=True, temperature=0.7)[0]['generated_text']
# Extract the assistant's response
assistant_response = response.split("Assistant:")[-1].strip()
return assistant_response
except Exception as e:
return f"Error generating response: {str(e)}"
# Text-to-speech function
def text_to_speech(text, lang='hi'):
try:
# Use a better TTS engine for Indic languages
if lang in ['hi', 'bn', 'gu', 'kn', 'ml', 'mr', 'or', 'pa', 'ta', 'te']:
tts = gTTS(text=text, lang=lang, tld='co.in') # Use Indian TLD
else:
tts = gTTS(text=text, lang=lang)
tts.save("response.mp3")
return "response.mp3"
except Exception as e:
print(f"Error in text-to-speech: {str(e)}")
return None
# Language detection function
def detect_language(text):
lang_codes = {
'bn': 'Bengali', 'gu': 'Gujarati', 'hi': 'Hindi', 'kn': 'Kannada',
'ml': 'Malayalam', 'mr': 'Marathi', 'or': 'Oriya', 'pa': 'Punjabi',
'ta': 'Tamil', 'te': 'Telugu', 'en': 'English'
}
try:
detected_lang = detect(text)
return detected_lang if detected_lang in lang_codes else 'en'
except:
# Fallback to simple script-based detection
for code, lang in lang_codes.items():
if any(ord(char) >= 0x0900 and ord(char) <= 0x097F for char in text): # Devanagari script
return 'hi'
return 'en' # Default to English if no Indic script is detected
@spaces.GPU
def indic_language_assistant(input_type, audio_input, text_input):
try:
if input_type == "audio" and audio_input is not None:
if whisper_processor is None or whisper_model is None:
return "Error: Speech recognition model is not available.", "", None
transcription = process_audio_input(audio_input, whisper_processor, whisper_model)
elif input_type == "text" and text_input:
transcription = text_input
else:
return "Please provide either audio or text input.", "", None
if sarvam_pipe is None:
return transcription, "Error: Text generation model is not available.", None
response = generate_response(transcription, sarvam_pipe)
lang = detect_language(response)
audio_response = text_to_speech(response, lang)
return transcription, response, audio_response
except Exception as e:
logger.error(f"An error occurred in indic_language_assistant: {str(e)}")
return str(e), "An error occurred while processing your request.", None
# Updated Custom CSS
custom_css = """
body {
background-color: #0b0f19;
color: #e2e8f0;
font-family: 'Arial', sans-serif;
}
#custom-header {
text-align: center;
padding: 20px 0;
background-color: #1a202c;
margin-bottom: 20px;
border-radius: 10px;
}
#custom-header h1 {
font-size: 2.5rem;
margin-bottom: 0.5rem;
}
#custom-header h1 .blue {
color: #60a5fa;
}
#custom-header h1 .pink {
color: #f472b6;
}
#custom-header h2 {
font-size: 1.5rem;
color: #94a3b8;
}
.suggestions {
display: flex;
justify-content: center;
flex-wrap: wrap;
gap: 1rem;
margin: 20px 0;
}
.suggestion {
background-color: #1e293b;
border-radius: 0.5rem;
padding: 1rem;
display: flex;
align-items: center;
transition: transform 0.3s ease;
width: 200px;
}
.suggestion:hover {
transform: translateY(-5px);
}
.suggestion-icon {
font-size: 1.5rem;
margin-right: 1rem;
background-color: #2d3748;
padding: 0.5rem;
border-radius: 50%;
}
.gradio-container {
max-width: 100% !important;
}
#component-0, #component-1, #component-2 {
max-width: 100% !important;
}
footer {
text-align: center;
margin-top: 2rem;
color: #64748b;
}
"""
# Custom HTML for the header
custom_header = """
<div id="custom-header">
<h1>
<span class="blue">Hello,</span>
<span class="pink">User</span>
</h1>
<h2>How can I help you today?</h2>
</div>
"""
# Custom HTML for suggestions
custom_suggestions = """
<div class="suggestions">
<div class="suggestion">
<span class="suggestion-icon">🎤</span>
<p>Speak in any Indic language</p>
</div>
<div class="suggestion">
<span class="suggestion-icon">⌨️</span>
<p>Type in any Indic language</p>
</div>
<div class="suggestion">
<span class="suggestion-icon">🤖</span>
<p>Get AI-generated responses</p>
</div>
<div class="suggestion">
<span class="suggestion-icon">🔊</span>
<p>Listen to audio responses</p>
</div>
</div>
"""
# Create Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
body_background_fill="#0b0f19",
body_text_color="#e2e8f0",
button_primary_background_fill="#3b82f6",
button_primary_background_fill_hover="#2563eb",
button_primary_text_color="white",
block_title_text_color="#94a3b8",
block_label_text_color="#94a3b8",
)) as iface:
gr.HTML(custom_header)
gr.HTML(custom_suggestions)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Indic Assistant")
with gr.Column(scale=1, min_width=100):
gr.Button("Try Advanced Features", size="sm")
input_type = gr.Radio(["audio", "text"], label="Input Type", value="audio")
audio_input = gr.Audio(type="filepath", label="Speak (if audio input selected)")
text_input = gr.Textbox(label="Type your message (if text input selected)")
submit_btn = gr.Button("Submit")
output_transcription = gr.Textbox(label="Transcription/Input")
output_response = gr.Textbox(label="Generated Response")
output_audio = gr.Audio(label="Audio Response")
submit_btn.click(
fn=indic_language_assistant,
inputs=[input_type, audio_input, text_input],
outputs=[output_transcription, output_response, output_audio]
)
gr.HTML("<footer>Powered by Indic Language AI</footer>")
# Launch the app
iface.launch() |