|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import to_pil_image |
|
import matplotlib.pyplot as plt |
|
from PIL import Image |
|
import numpy as np |
|
import cv2 |
|
from timm import create_model |
|
from huggingface_hub import hf_hub_download |
|
import io |
|
import warnings |
|
|
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
|
|
|
|
class AdvancedGradCAM: |
|
def __init__(self, model, target_layer, method="gradcam"): |
|
self.model = model |
|
self.target_layer = target_layer |
|
self.method = method |
|
self.gradients = None |
|
self.activations = None |
|
self.forward_hook_handle = None |
|
self.backward_hook_handle = None |
|
self._register_hooks() |
|
|
|
def _register_hooks(self): |
|
layer = dict([*self.model.named_modules()])[self.target_layer] |
|
|
|
def forward_hook(module, input, output): |
|
if isinstance(output, tuple): |
|
for item in output: |
|
if isinstance(item, torch.Tensor): |
|
self.activations = item.detach() |
|
break |
|
else: |
|
self.activations = output.detach() |
|
|
|
def backward_hook(module, grad_in, grad_out): |
|
self.gradients = grad_out[0].detach() |
|
|
|
self.forward_hook_handle = layer.register_forward_hook(forward_hook) |
|
self.backward_hook_handle = layer.register_backward_hook(backward_hook) |
|
|
|
def remove_hooks(self): |
|
if self.forward_hook_handle: |
|
self.forward_hook_handle.remove() |
|
if self.backward_hook_handle: |
|
self.backward_hook_handle.remove() |
|
self.forward_hook_handle = None |
|
self.backward_hook_handle = None |
|
self.gradients = None |
|
self.activations = None |
|
|
|
def generate(self, input_tensor, class_idx, num_samples=5, stdev_spread=0.15): |
|
if self.forward_hook_handle is None or self.backward_hook_handle is None: |
|
self._register_hooks() |
|
|
|
self.model.zero_grad() |
|
|
|
try: |
|
input_tensor.requires_grad_(True) |
|
output = self.model(input_tensor) |
|
class_score = output[:, class_idx] |
|
class_score.backward() |
|
|
|
if self.gradients is None or self.activations is None: |
|
print(f"Warning: Gradients or activations are None for layer {self.target_layer}. Using fallback CAM.") |
|
h, w = input_tensor.shape[-2:] |
|
fallback_h, fallback_w = h // 16, w // 16 |
|
return np.ones((fallback_h, fallback_w), dtype=np.float32) * 0.5 |
|
|
|
if self.method == "gradcam": |
|
cam_result = self._standard_gradcam() |
|
else: |
|
raise ValueError(f"Unsupported CAM method: {self.method}") |
|
|
|
self.gradients = None |
|
self.activations = None |
|
input_tensor.requires_grad_(False) |
|
self.model.zero_grad() |
|
|
|
return cam_result |
|
|
|
except Exception as e: |
|
print(f"Error in AdvancedGradCAM.generate: {str(e)}") |
|
import traceback |
|
traceback.print_exc() |
|
h, w = input_tensor.shape[-2:] |
|
fallback_h, fallback_w = h // 16, w // 16 |
|
return np.ones((fallback_h, fallback_w), dtype=np.float32) * 0.5 |
|
|
|
def _standard_gradcam(self): |
|
gradients = self.gradients.cpu().numpy() |
|
activations = self.activations.cpu().numpy() |
|
|
|
if len(gradients.shape) != 4 or len(activations.shape) != 4: |
|
print(f"Warning: Unexpected shape in GradCAM++. Gradients: {gradients.shape}, Activations: {activations.shape}. Using fallback.") |
|
fallback_h, fallback_w = activations.shape[-2:] if len(activations.shape) >= 2 else (14, 14) |
|
return np.ones((fallback_h, fallback_w), dtype=np.float32) * 0.5 |
|
|
|
grad_2 = gradients ** 2 |
|
grad_3 = gradients ** 3 |
|
epsilon = 1e-10 |
|
alpha_denom = 2 * grad_2 + np.sum(activations * grad_3, axis=(2, 3), keepdims=True) |
|
alpha = grad_2 / (alpha_denom + epsilon) |
|
positive_activations_gradients = np.maximum(gradients, 0) |
|
weights = np.sum(alpha * positive_activations_gradients, axis=(2, 3)) |
|
|
|
cam = np.zeros(activations.shape[2:], dtype=np.float32) |
|
for i, w in enumerate(weights[0]): |
|
cam += w * activations[0, i, :, :] |
|
|
|
cam = np.maximum(cam, 0) |
|
if np.max(cam) > 0: |
|
cam = cam / np.max(cam) |
|
return cam |
|
|
|
|
|
def overlay_cam_on_image(image, cam, face_box=None, alpha=0.5): |
|
img_np = np.array(image.convert('RGB')) |
|
h, w = img_np.shape[:2] |
|
|
|
if face_box is not None: |
|
x, y, fw, fh = map(int, face_box) |
|
if fw <= 0 or fh <= 0: |
|
print(f"Warning: Invalid face box dimensions {fw}x{fh}. Applying CAM to full image.") |
|
face_box = None |
|
else: |
|
try: |
|
face_cam_resized = cv2.resize(cam, (fw, fh)) |
|
except cv2.error as e: |
|
print(f"Error resizing CAM to face box {fw}x{fh}: {e}. Applying CAM to full image.") |
|
face_box = None |
|
|
|
if face_box is not None: |
|
x, y, fw, fh = map(int, face_box) |
|
full_cam_heatmap = np.zeros((h, w), dtype=np.float32) |
|
y_end = min(y + fh, h) |
|
x_end = min(x + fw, w) |
|
fh_clipped = y_end - y |
|
fw_clipped = x_end - x |
|
if fh_clipped > 0 and fw_clipped > 0: |
|
full_cam_heatmap[y:y_end, x:x_end] = face_cam_resized[:fh_clipped, :fw_clipped] |
|
else: |
|
print("Warning: Face box calculation resulted in zero area for heatmap placement.") |
|
heatmap_colored = cv2.applyColorMap(np.uint8(255 * full_cam_heatmap), cv2.COLORMAP_JET) |
|
heatmap_colored = cv2.cvtColor(heatmap_colored, cv2.COLOR_BGR2RGB) |
|
else: |
|
try: |
|
cam_resized = cv2.resize(cam, (w, h)) |
|
except cv2.error as e: |
|
print(f"Error resizing CAM to full image size {w}x{h}: {e}. Skipping overlay.") |
|
return image |
|
heatmap_colored = cv2.applyColorMap(np.uint8(255 * cam_resized), cv2.COLORMAP_JET) |
|
heatmap_colored = cv2.cvtColor(heatmap_colored, cv2.COLOR_BGR2RGB) |
|
|
|
overlayed_img = cv2.addWeighted(img_np, 1 - alpha, heatmap_colored, alpha, 0) |
|
return Image.fromarray(overlayed_img) |
|
|
|
def save_comparison(image, cam, overlay, face_box=None): |
|
fig, axes = plt.subplots(1, 3, figsize=(15, 5)) |
|
|
|
axes[0].imshow(image) |
|
axes[0].set_title("Original") |
|
if face_box is not None: |
|
x, y, w, h = map(int, face_box) |
|
if w > 0 and h > 0: |
|
rect = plt.Rectangle((x, y), w, h, edgecolor='lime', linewidth=2, fill=False) |
|
axes[0].add_patch(rect) |
|
axes[0].axis("off") |
|
|
|
if face_box is not None: |
|
x, y, w, h = map(int, face_box) |
|
if w > 0 and h > 0: |
|
try: |
|
cam_display = cv2.resize(cam, (w, h)) |
|
img_h, img_w = np.array(image).shape[:2] |
|
full_cam_display = np.zeros((img_h, img_w)) |
|
y_end = min(y + h, img_h) |
|
x_end = min(x + w, img_w) |
|
h_clipped = y_end - y |
|
w_clipped = x_end - x |
|
if h_clipped > 0 and w_clipped > 0: |
|
full_cam_display[y:y_end, x:x_end] = cam_display[:h_clipped, :w_clipped] |
|
axes[1].imshow(full_cam_display, cmap="jet") |
|
except cv2.error: |
|
axes[1].imshow(cam, cmap="jet") |
|
else: |
|
axes[1].imshow(cam, cmap="jet") |
|
else: |
|
axes[1].imshow(cam, cmap="jet") |
|
|
|
axes[1].set_title("CAM") |
|
axes[1].axis("off") |
|
|
|
axes[2].imshow(overlay) |
|
axes[2].set_title("Overlay") |
|
axes[2].axis("off") |
|
|
|
plt.tight_layout() |
|
|
|
buf = io.BytesIO() |
|
plt.savefig(buf, format="png", bbox_inches="tight") |
|
plt.close() |
|
buf.seek(0) |
|
return Image.open(buf) |
|
|
|
|
|
def load_xception_model(model_repo="drg31/xception", model_filename="final_xception_model.pth", num_classes=2): |
|
try: |
|
model_path = hf_hub_download(repo_id=model_repo, filename=model_filename) |
|
print(f"Model downloaded to: {model_path}") |
|
except Exception as e: |
|
print(f"Error downloading model from Hugging Face Hub ({model_repo}/{model_filename}): {e}") |
|
raise |
|
|
|
model = create_model("xception", pretrained=False, num_classes=num_classes) |
|
print(f"Created Xception model with {num_classes} output classes.") |
|
|
|
try: |
|
checkpoint = torch.load(model_path, map_location=torch.device('cpu'), weights_only=False) |
|
print(f"Checkpoint loaded successfully from {model_path} (with weights_only=False).") |
|
except Exception as e: |
|
print(f"Error loading checkpoint from {model_path}: {e}") |
|
raise |
|
|
|
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: |
|
checkpoint_state_dict = checkpoint['state_dict'] |
|
print("Extracted state_dict from checkpoint dictionary.") |
|
else: |
|
checkpoint_state_dict = checkpoint |
|
print("Using checkpoint directly as state_dict.") |
|
|
|
cleaned_state_dict = {} |
|
for k, v in checkpoint_state_dict.items(): |
|
name = k.replace('module.', '') |
|
cleaned_state_dict[name] = v |
|
print(f"Cleaned state_dict contains {len(cleaned_state_dict)} keys (after removing 'module.' prefix).") |
|
|
|
print("Loading state_dict with strict=False...") |
|
report = model.load_state_dict(cleaned_state_dict, strict=False) |
|
print(f"Load report - Missing keys: {report.missing_keys}") |
|
print(f"Load report - Unexpected keys: {report.unexpected_keys}") |
|
|
|
print("Model state loaded.") |
|
model.eval() |
|
return model |
|
|
|
def get_target_layer_xception(model): |
|
target_layer_name = "block12.rep.6" |
|
if target_layer_name not in dict([*model.named_modules()]): |
|
print(f"Warning: Target layer '{target_layer_name}' not found. Trying 'block11.rep.2'.") |
|
target_layer_name = "block11.rep.2" |
|
if target_layer_name not in dict([*model.named_modules()]): |
|
print(f"Warning: Fallback layer '{target_layer_name}' not found. Trying 'act4'.") |
|
target_layer_name = "act4" |
|
if target_layer_name not in dict([*model.named_modules()]): |
|
raise ValueError("Could not find suitable target layer for GradCAM in Xception model.") |
|
print(f"Using target layer: {target_layer_name}") |
|
return target_layer_name |
|
|
|
|
|
def generate_smoothgrad_visualizations_xception(model, image, target_class=None, face_only=True, num_samples=5, stdev_spread=0.15): |
|
print("\n--- Starting Prediction and Grad-CAM ---") |
|
try: |
|
predicted_class_idx, confidence = predict_image(model, image, face_only) |
|
except Exception as pred_e: |
|
print(f"Error during prediction: {pred_e}") |
|
import traceback |
|
traceback.print_exc() |
|
return None, None, None, None |
|
|
|
if target_class is None: |
|
cam_target_class = predicted_class_idx |
|
print(f"CAM Target Class: Using predicted class index {cam_target_class} ({'real' if cam_target_class == 0 else 'fake'})") |
|
elif target_class in [0, 1]: |
|
cam_target_class = target_class |
|
print(f"CAM Target Class: Using specified class index {cam_target_class} ({'real' if cam_target_class == 0 else 'fake'})") |
|
else: |
|
print(f"Warning: Invalid target_class specified ({target_class}). Defaulting to predicted class index {predicted_class_idx}.") |
|
cam_target_class = predicted_class_idx |
|
|
|
device = next(model.parameters()).device |
|
model.eval() |
|
|
|
IMAGE_SIZE = 299 |
|
transform = transforms.Compose([ |
|
transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
|
]) |
|
|
|
dataset = ImageDataset(image, transform=transform, face_only=face_only) |
|
input_tensor, original_image, face_box = dataset[0] |
|
input_tensor = input_tensor.unsqueeze(0).to(device) |
|
print(f"Input tensor for CAM shape: {input_tensor.shape}, Face box: {face_box}") |
|
|
|
raw_cam = None |
|
try: |
|
target_layer = get_target_layer_xception(model) |
|
print(f"Using target layer for CAM: {target_layer}") |
|
cam_extractor = AdvancedGradCAM(model, target_layer, method="gradcam") |
|
raw_cam = cam_extractor.generate(input_tensor, cam_target_class, num_samples=num_samples, stdev_spread=stdev_spread) |
|
except Exception as cam_e: |
|
print(f"Error during CAM generation: {cam_e}") |
|
import traceback |
|
traceback.print_exc() |
|
|
|
cam_heatmap_img, overlay_img, comparison_img = None, None, None |
|
if raw_cam is None or not isinstance(raw_cam, np.ndarray) or raw_cam.size == 0: |
|
print("CAM generation failed or produced invalid result. Skipping visualization.") |
|
else: |
|
try: |
|
print("Generating visualizations...") |
|
img_h, img_w = np.array(original_image).shape[:2] |
|
heatmap_display_np = np.zeros((img_h, img_w), dtype=np.float32) |
|
if face_box: |
|
x, y, w_fb, h_fb = map(int, face_box) |
|
if w_fb > 0 and h_fb > 0: |
|
cam_resized_face = cv2.resize(raw_cam, (w_fb, h_fb), interpolation=cv2.INTER_LINEAR) |
|
y_end, x_end = min(y + h_fb, img_h), min(x + w_fb, img_w) |
|
h_clip, w_clip = y_end - y, x_end - x |
|
if h_clip > 0 and w_clip > 0: |
|
heatmap_display_np[y:y_end, x:x_end] = cam_resized_face[:h_clip, :w_clip] |
|
else: |
|
heatmap_display_np = cv2.resize(raw_cam, (img_w, img_h), interpolation=cv2.INTER_LINEAR) |
|
else: |
|
heatmap_display_np = cv2.resize(raw_cam, (img_w, img_h), interpolation=cv2.INTER_LINEAR) |
|
|
|
min_h, max_h = np.min(heatmap_display_np), np.max(heatmap_display_np) |
|
if max_h > min_h: |
|
heatmap_norm = (heatmap_display_np - min_h) / (max_h - min_h) |
|
else: |
|
heatmap_norm = np.zeros_like(heatmap_display_np) |
|
heatmap_rgb = (plt.cm.jet(heatmap_norm)[:, :, :3] * 255).astype(np.uint8) |
|
cam_heatmap_img = Image.fromarray(heatmap_rgb) |
|
print(" Heatmap generated.") |
|
|
|
overlay_img = overlay_cam_on_image(original_image, raw_cam, face_box) |
|
print(" Overlay generated.") |
|
|
|
if overlay_img: |
|
comparison_img = save_comparison(original_image, raw_cam, overlay_img, face_box) |
|
print(" Comparison generated.") |
|
else: |
|
print(" Skipping comparison image because overlay failed.") |
|
|
|
except Exception as vis_e: |
|
print(f"Error during visualization generation: {vis_e}") |
|
import traceback |
|
traceback.print_exc() |
|
|
|
print("--- Prediction and Grad-CAM Finished ---") |
|
return raw_cam, cam_heatmap_img, overlay_img, comparison_img |
|
|
|
|
|
class ImageDataset(torch.utils.data.Dataset): |
|
def __init__(self, image, transform=None, face_only=True): |
|
self.image = image |
|
self.transform = transform |
|
self.face_only = face_only |
|
try: |
|
self.face_detector = cv2.CascadeClassifier( |
|
cv2.data.haarcascades + 'haarcascade_frontalface_default.xml' |
|
) |
|
if self.face_detector.empty(): |
|
raise IOError("Failed to load cascade file") |
|
except Exception as e: |
|
print(f"Error loading Haar Cascade: {e}. Face detection might fail.") |
|
class DummyDetector: |
|
def detectMultiScale(self, *args, **kwargs): return [] |
|
self.face_detector = DummyDetector() |
|
|
|
def __len__(self): |
|
return 1 |
|
|
|
def detect_face(self, image_np): |
|
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) |
|
faces = self.face_detector.detectMultiScale(gray, 1.1, 5) |
|
if len(faces) == 0: |
|
print("No face detected, using full image as fallback.") |
|
h, w = image_np.shape[:2] |
|
return (0, 0, w, h), image_np |
|
areas = [w * h for (x, y, w, h) in faces] |
|
idx = np.argmax(areas) |
|
x, y, w, h = faces[idx] |
|
pad_x, pad_y = int(w * 0.05), int(h * 0.05) |
|
x1, y1 = max(0, x - pad_x), max(0, y - pad_y) |
|
x2, y2 = min(image_np.shape[1], x + w + pad_x), min(image_np.shape[0], y + h + pad_y) |
|
face_img = image_np[y1:y2, x1:x2] |
|
return (x1, y1, x2 - x1, y2 - y1), face_img |
|
|
|
def __getitem__(self, idx): |
|
image_np = np.array(self.image) |
|
original_image = self.image.copy() |
|
face_box_final = None |
|
processed_image = original_image |
|
|
|
if self.face_only: |
|
try: |
|
face_box, face_img_np = self.detect_face(image_np) |
|
if face_img_np.size == 0 or face_box[2] <= 0 or face_box[3] <= 0: |
|
print("Warning: Face detection returned empty or invalid region. Using full image.") |
|
face_box_final = None |
|
processed_image = original_image |
|
else: |
|
processed_image = Image.fromarray(face_img_np) |
|
face_box_final = face_box |
|
except Exception as e: |
|
print(f"Error during face detection: {e}. Using full image.") |
|
face_box_final = None |
|
processed_image = original_image |
|
else: |
|
face_box_final = None |
|
processed_image = original_image |
|
|
|
if self.transform: |
|
tensor = self.transform(processed_image) |
|
else: |
|
tensor = transforms.ToTensor()(processed_image) |
|
|
|
return tensor, original_image, face_box_final |
|
|
|
def predict_image(model, image, face_only=True): |
|
device = next(model.parameters()).device |
|
model.eval() |
|
|
|
IMAGE_SIZE = 299 |
|
transform = transforms.Compose([ |
|
transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
|
]) |
|
|
|
dataset = ImageDataset(image, transform=transform, face_only=face_only) |
|
input_tensor, _, _ = dataset[0] |
|
input_tensor = input_tensor.unsqueeze(0).to(device) |
|
|
|
with torch.no_grad(): |
|
logits = model(input_tensor) |
|
probabilities = F.softmax(logits, dim=1) |
|
|
|
pred_prob = probabilities[0].max().item() |
|
pred_class_idx = probabilities[0].argmax().item() |
|
pred_label = "real" if pred_class_idx == 0 else "fake" |
|
|
|
if pred_prob < 0.7: |
|
print(f"Warning: Low confidence ({pred_prob:.4f}) detected. Model may need fine-tuning.") |
|
|
|
print(f"--- Prediction ---") |
|
print(f"Input Tensor Shape: {input_tensor.shape}") |
|
print(f"Logits: {logits.cpu().numpy()}") |
|
print(f"Probabilities: {probabilities.cpu().numpy()}") |
|
print(f"Predicted Class: {pred_label} (Index: {pred_class_idx})") |
|
print(f"Confidence: {pred_prob:.4f}") |
|
print(f"--------------------") |
|
|
|
return pred_class_idx, pred_prob |