File size: 19,075 Bytes
d742a0e d4c5c7b d742a0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from torchvision.transforms.functional import to_pil_image
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import cv2
from timm import create_model
from huggingface_hub import hf_hub_download
import io
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
# Advanced Grad-CAM Implementation
class AdvancedGradCAM:
def __init__(self, model, target_layer, method="gradcam"):
self.model = model
self.target_layer = target_layer
self.method = method
self.gradients = None
self.activations = None
self.forward_hook_handle = None
self.backward_hook_handle = None
self._register_hooks()
def _register_hooks(self):
layer = dict([*self.model.named_modules()])[self.target_layer]
def forward_hook(module, input, output):
if isinstance(output, tuple):
for item in output:
if isinstance(item, torch.Tensor):
self.activations = item.detach()
break
else:
self.activations = output.detach()
def backward_hook(module, grad_in, grad_out):
self.gradients = grad_out[0].detach()
self.forward_hook_handle = layer.register_forward_hook(forward_hook)
self.backward_hook_handle = layer.register_backward_hook(backward_hook)
def remove_hooks(self):
if self.forward_hook_handle:
self.forward_hook_handle.remove()
if self.backward_hook_handle:
self.backward_hook_handle.remove()
self.forward_hook_handle = None
self.backward_hook_handle = None
self.gradients = None
self.activations = None
def generate(self, input_tensor, class_idx, num_samples=5, stdev_spread=0.15):
if self.forward_hook_handle is None or self.backward_hook_handle is None:
self._register_hooks()
self.model.zero_grad()
try:
input_tensor.requires_grad_(True)
output = self.model(input_tensor)
class_score = output[:, class_idx]
class_score.backward()
if self.gradients is None or self.activations is None:
print(f"Warning: Gradients or activations are None for layer {self.target_layer}. Using fallback CAM.")
h, w = input_tensor.shape[-2:]
fallback_h, fallback_w = h // 16, w // 16
return np.ones((fallback_h, fallback_w), dtype=np.float32) * 0.5
if self.method == "gradcam":
cam_result = self._standard_gradcam()
else:
raise ValueError(f"Unsupported CAM method: {self.method}")
self.gradients = None
self.activations = None
input_tensor.requires_grad_(False)
self.model.zero_grad()
return cam_result
except Exception as e:
print(f"Error in AdvancedGradCAM.generate: {str(e)}")
import traceback
traceback.print_exc()
h, w = input_tensor.shape[-2:]
fallback_h, fallback_w = h // 16, w // 16
return np.ones((fallback_h, fallback_w), dtype=np.float32) * 0.5
def _standard_gradcam(self):
gradients = self.gradients.cpu().numpy()
activations = self.activations.cpu().numpy()
if len(gradients.shape) != 4 or len(activations.shape) != 4:
print(f"Warning: Unexpected shape in GradCAM++. Gradients: {gradients.shape}, Activations: {activations.shape}. Using fallback.")
fallback_h, fallback_w = activations.shape[-2:] if len(activations.shape) >= 2 else (14, 14)
return np.ones((fallback_h, fallback_w), dtype=np.float32) * 0.5
grad_2 = gradients ** 2
grad_3 = gradients ** 3
epsilon = 1e-10
alpha_denom = 2 * grad_2 + np.sum(activations * grad_3, axis=(2, 3), keepdims=True)
alpha = grad_2 / (alpha_denom + epsilon)
positive_activations_gradients = np.maximum(gradients, 0)
weights = np.sum(alpha * positive_activations_gradients, axis=(2, 3))
cam = np.zeros(activations.shape[2:], dtype=np.float32)
for i, w in enumerate(weights[0]):
cam += w * activations[0, i, :, :]
cam = np.maximum(cam, 0)
if np.max(cam) > 0:
cam = cam / np.max(cam)
return cam
# Utility Functions
def overlay_cam_on_image(image, cam, face_box=None, alpha=0.5):
img_np = np.array(image.convert('RGB'))
h, w = img_np.shape[:2]
if face_box is not None:
x, y, fw, fh = map(int, face_box)
if fw <= 0 or fh <= 0:
print(f"Warning: Invalid face box dimensions {fw}x{fh}. Applying CAM to full image.")
face_box = None
else:
try:
face_cam_resized = cv2.resize(cam, (fw, fh))
except cv2.error as e:
print(f"Error resizing CAM to face box {fw}x{fh}: {e}. Applying CAM to full image.")
face_box = None
if face_box is not None:
x, y, fw, fh = map(int, face_box)
full_cam_heatmap = np.zeros((h, w), dtype=np.float32)
y_end = min(y + fh, h)
x_end = min(x + fw, w)
fh_clipped = y_end - y
fw_clipped = x_end - x
if fh_clipped > 0 and fw_clipped > 0:
full_cam_heatmap[y:y_end, x:x_end] = face_cam_resized[:fh_clipped, :fw_clipped]
else:
print("Warning: Face box calculation resulted in zero area for heatmap placement.")
heatmap_colored = cv2.applyColorMap(np.uint8(255 * full_cam_heatmap), cv2.COLORMAP_JET)
heatmap_colored = cv2.cvtColor(heatmap_colored, cv2.COLOR_BGR2RGB)
else:
try:
cam_resized = cv2.resize(cam, (w, h))
except cv2.error as e:
print(f"Error resizing CAM to full image size {w}x{h}: {e}. Skipping overlay.")
return image
heatmap_colored = cv2.applyColorMap(np.uint8(255 * cam_resized), cv2.COLORMAP_JET)
heatmap_colored = cv2.cvtColor(heatmap_colored, cv2.COLOR_BGR2RGB)
overlayed_img = cv2.addWeighted(img_np, 1 - alpha, heatmap_colored, alpha, 0)
return Image.fromarray(overlayed_img)
def save_comparison(image, cam, overlay, face_box=None):
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
axes[0].imshow(image)
axes[0].set_title("Original")
if face_box is not None:
x, y, w, h = map(int, face_box)
if w > 0 and h > 0:
rect = plt.Rectangle((x, y), w, h, edgecolor='lime', linewidth=2, fill=False)
axes[0].add_patch(rect)
axes[0].axis("off")
if face_box is not None:
x, y, w, h = map(int, face_box)
if w > 0 and h > 0:
try:
cam_display = cv2.resize(cam, (w, h))
img_h, img_w = np.array(image).shape[:2]
full_cam_display = np.zeros((img_h, img_w))
y_end = min(y + h, img_h)
x_end = min(x + w, img_w)
h_clipped = y_end - y
w_clipped = x_end - x
if h_clipped > 0 and w_clipped > 0:
full_cam_display[y:y_end, x:x_end] = cam_display[:h_clipped, :w_clipped]
axes[1].imshow(full_cam_display, cmap="jet")
except cv2.error:
axes[1].imshow(cam, cmap="jet")
else:
axes[1].imshow(cam, cmap="jet")
else:
axes[1].imshow(cam, cmap="jet")
axes[1].set_title("CAM")
axes[1].axis("off")
axes[2].imshow(overlay)
axes[2].set_title("Overlay")
axes[2].axis("off")
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
plt.close()
buf.seek(0)
return Image.open(buf)
#load xception model
def load_xception_model(model_repo="drg31/xception", model_filename="final_xception_model.pth", num_classes=2):
try:
model_path = hf_hub_download(repo_id=model_repo, filename=model_filename)
print(f"Model downloaded to: {model_path}")
except Exception as e:
print(f"Error downloading model from Hugging Face Hub ({model_repo}/{model_filename}): {e}")
raise
model = create_model("xception", pretrained=False, num_classes=num_classes)
print(f"Created Xception model with {num_classes} output classes.")
try:
checkpoint = torch.load(model_path, map_location=torch.device('cpu'), weights_only=False)
print(f"Checkpoint loaded successfully from {model_path} (with weights_only=False).")
except Exception as e:
print(f"Error loading checkpoint from {model_path}: {e}")
raise
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
checkpoint_state_dict = checkpoint['state_dict']
print("Extracted state_dict from checkpoint dictionary.")
else:
checkpoint_state_dict = checkpoint
print("Using checkpoint directly as state_dict.")
cleaned_state_dict = {}
for k, v in checkpoint_state_dict.items():
name = k.replace('module.', '')
cleaned_state_dict[name] = v
print(f"Cleaned state_dict contains {len(cleaned_state_dict)} keys (after removing 'module.' prefix).")
print("Loading state_dict with strict=False...")
report = model.load_state_dict(cleaned_state_dict, strict=False)
print(f"Load report - Missing keys: {report.missing_keys}")
print(f"Load report - Unexpected keys: {report.unexpected_keys}")
print("Model state loaded.")
model.eval()
return model
def get_target_layer_xception(model):
target_layer_name = "block12.rep.6" # Deeper layer for semantic features
if target_layer_name not in dict([*model.named_modules()]):
print(f"Warning: Target layer '{target_layer_name}' not found. Trying 'block11.rep.2'.")
target_layer_name = "block11.rep.2"
if target_layer_name not in dict([*model.named_modules()]):
print(f"Warning: Fallback layer '{target_layer_name}' not found. Trying 'act4'.")
target_layer_name = "act4"
if target_layer_name not in dict([*model.named_modules()]):
raise ValueError("Could not find suitable target layer for GradCAM in Xception model.")
print(f"Using target layer: {target_layer_name}")
return target_layer_name
# Main Visualization Function
def generate_smoothgrad_visualizations_xception(model, image, target_class=None, face_only=True, num_samples=5, stdev_spread=0.15):
print("\n--- Starting Prediction and Grad-CAM ---")
try:
predicted_class_idx, confidence = predict_image(model, image, face_only)
except Exception as pred_e:
print(f"Error during prediction: {pred_e}")
import traceback
traceback.print_exc()
return None, None, None, None
if target_class is None:
cam_target_class = predicted_class_idx
print(f"CAM Target Class: Using predicted class index {cam_target_class} ({'real' if cam_target_class == 0 else 'fake'})")
elif target_class in [0, 1]:
cam_target_class = target_class
print(f"CAM Target Class: Using specified class index {cam_target_class} ({'real' if cam_target_class == 0 else 'fake'})")
else:
print(f"Warning: Invalid target_class specified ({target_class}). Defaulting to predicted class index {predicted_class_idx}.")
cam_target_class = predicted_class_idx
device = next(model.parameters()).device
model.eval()
IMAGE_SIZE = 299
transform = transforms.Compose([
transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
dataset = ImageDataset(image, transform=transform, face_only=face_only)
input_tensor, original_image, face_box = dataset[0]
input_tensor = input_tensor.unsqueeze(0).to(device)
print(f"Input tensor for CAM shape: {input_tensor.shape}, Face box: {face_box}")
raw_cam = None
try:
target_layer = get_target_layer_xception(model)
print(f"Using target layer for CAM: {target_layer}")
cam_extractor = AdvancedGradCAM(model, target_layer, method="gradcam")
raw_cam = cam_extractor.generate(input_tensor, cam_target_class, num_samples=num_samples, stdev_spread=stdev_spread)
except Exception as cam_e:
print(f"Error during CAM generation: {cam_e}")
import traceback
traceback.print_exc()
cam_heatmap_img, overlay_img, comparison_img = None, None, None
if raw_cam is None or not isinstance(raw_cam, np.ndarray) or raw_cam.size == 0:
print("CAM generation failed or produced invalid result. Skipping visualization.")
else:
try:
print("Generating visualizations...")
img_h, img_w = np.array(original_image).shape[:2]
heatmap_display_np = np.zeros((img_h, img_w), dtype=np.float32)
if face_box:
x, y, w_fb, h_fb = map(int, face_box)
if w_fb > 0 and h_fb > 0:
cam_resized_face = cv2.resize(raw_cam, (w_fb, h_fb), interpolation=cv2.INTER_LINEAR)
y_end, x_end = min(y + h_fb, img_h), min(x + w_fb, img_w)
h_clip, w_clip = y_end - y, x_end - x
if h_clip > 0 and w_clip > 0:
heatmap_display_np[y:y_end, x:x_end] = cam_resized_face[:h_clip, :w_clip]
else:
heatmap_display_np = cv2.resize(raw_cam, (img_w, img_h), interpolation=cv2.INTER_LINEAR)
else:
heatmap_display_np = cv2.resize(raw_cam, (img_w, img_h), interpolation=cv2.INTER_LINEAR)
min_h, max_h = np.min(heatmap_display_np), np.max(heatmap_display_np)
if max_h > min_h:
heatmap_norm = (heatmap_display_np - min_h) / (max_h - min_h)
else:
heatmap_norm = np.zeros_like(heatmap_display_np)
heatmap_rgb = (plt.cm.jet(heatmap_norm)[:, :, :3] * 255).astype(np.uint8)
cam_heatmap_img = Image.fromarray(heatmap_rgb)
print(" Heatmap generated.")
overlay_img = overlay_cam_on_image(original_image, raw_cam, face_box)
print(" Overlay generated.")
if overlay_img:
comparison_img = save_comparison(original_image, raw_cam, overlay_img, face_box)
print(" Comparison generated.")
else:
print(" Skipping comparison image because overlay failed.")
except Exception as vis_e:
print(f"Error during visualization generation: {vis_e}")
import traceback
traceback.print_exc()
print("--- Prediction and Grad-CAM Finished ---")
return raw_cam, cam_heatmap_img, overlay_img, comparison_img
# Face Detection Dataset
class ImageDataset(torch.utils.data.Dataset):
def __init__(self, image, transform=None, face_only=True):
self.image = image
self.transform = transform
self.face_only = face_only
try:
self.face_detector = cv2.CascadeClassifier(
cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
)
if self.face_detector.empty():
raise IOError("Failed to load cascade file")
except Exception as e:
print(f"Error loading Haar Cascade: {e}. Face detection might fail.")
class DummyDetector:
def detectMultiScale(self, *args, **kwargs): return []
self.face_detector = DummyDetector()
def __len__(self):
return 1
def detect_face(self, image_np):
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
faces = self.face_detector.detectMultiScale(gray, 1.1, 5)
if len(faces) == 0:
print("No face detected, using full image as fallback.")
h, w = image_np.shape[:2]
return (0, 0, w, h), image_np
areas = [w * h for (x, y, w, h) in faces]
idx = np.argmax(areas) # Select largest face
x, y, w, h = faces[idx]
pad_x, pad_y = int(w * 0.05), int(h * 0.05)
x1, y1 = max(0, x - pad_x), max(0, y - pad_y)
x2, y2 = min(image_np.shape[1], x + w + pad_x), min(image_np.shape[0], y + h + pad_y)
face_img = image_np[y1:y2, x1:x2]
return (x1, y1, x2 - x1, y2 - y1), face_img
def __getitem__(self, idx):
image_np = np.array(self.image)
original_image = self.image.copy()
face_box_final = None
processed_image = original_image
if self.face_only:
try:
face_box, face_img_np = self.detect_face(image_np)
if face_img_np.size == 0 or face_box[2] <= 0 or face_box[3] <= 0:
print("Warning: Face detection returned empty or invalid region. Using full image.")
face_box_final = None
processed_image = original_image
else:
processed_image = Image.fromarray(face_img_np)
face_box_final = face_box
except Exception as e:
print(f"Error during face detection: {e}. Using full image.")
face_box_final = None
processed_image = original_image
else:
face_box_final = None
processed_image = original_image
if self.transform:
tensor = self.transform(processed_image)
else:
tensor = transforms.ToTensor()(processed_image)
return tensor, original_image, face_box_final
def predict_image(model, image, face_only=True):
device = next(model.parameters()).device
model.eval()
IMAGE_SIZE = 299
transform = transforms.Compose([
transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
dataset = ImageDataset(image, transform=transform, face_only=face_only)
input_tensor, _, _ = dataset[0]
input_tensor = input_tensor.unsqueeze(0).to(device)
with torch.no_grad():
logits = model(input_tensor)
probabilities = F.softmax(logits, dim=1)
pred_prob = probabilities[0].max().item()
pred_class_idx = probabilities[0].argmax().item()
pred_label = "real" if pred_class_idx == 0 else "fake"
if pred_prob < 0.7: # Example threshold
print(f"Warning: Low confidence ({pred_prob:.4f}) detected. Model may need fine-tuning.")
print(f"--- Prediction ---")
print(f"Input Tensor Shape: {input_tensor.shape}")
print(f"Logits: {logits.cpu().numpy()}")
print(f"Probabilities: {probabilities.cpu().numpy()}")
print(f"Predicted Class: {pred_label} (Index: {pred_class_idx})")
print(f"Confidence: {pred_prob:.4f}")
print(f"--------------------")
return pred_class_idx, pred_prob |