Upload gradcam_xception.py
Browse files- gradcam_xception.py +460 -0
gradcam_xception.py
ADDED
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torchvision import transforms
|
5 |
+
from torchvision.transforms.functional import to_pil_image
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
import cv2
|
10 |
+
from timm import create_model
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
import io
|
13 |
+
import warnings
|
14 |
+
|
15 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
16 |
+
|
17 |
+
# Advanced Grad-CAM Implementation
|
18 |
+
class AdvancedGradCAM:
|
19 |
+
def __init__(self, model, target_layer, method="gradcam"):
|
20 |
+
self.model = model
|
21 |
+
self.target_layer = target_layer
|
22 |
+
self.method = method
|
23 |
+
self.gradients = None
|
24 |
+
self.activations = None
|
25 |
+
self.forward_hook_handle = None
|
26 |
+
self.backward_hook_handle = None
|
27 |
+
self._register_hooks()
|
28 |
+
|
29 |
+
def _register_hooks(self):
|
30 |
+
layer = dict([*self.model.named_modules()])[self.target_layer]
|
31 |
+
|
32 |
+
def forward_hook(module, input, output):
|
33 |
+
if isinstance(output, tuple):
|
34 |
+
for item in output:
|
35 |
+
if isinstance(item, torch.Tensor):
|
36 |
+
self.activations = item.detach()
|
37 |
+
break
|
38 |
+
else:
|
39 |
+
self.activations = output.detach()
|
40 |
+
|
41 |
+
def backward_hook(module, grad_in, grad_out):
|
42 |
+
self.gradients = grad_out[0].detach()
|
43 |
+
|
44 |
+
self.forward_hook_handle = layer.register_forward_hook(forward_hook)
|
45 |
+
self.backward_hook_handle = layer.register_backward_hook(backward_hook)
|
46 |
+
|
47 |
+
def remove_hooks(self):
|
48 |
+
if self.forward_hook_handle:
|
49 |
+
self.forward_hook_handle.remove()
|
50 |
+
if self.backward_hook_handle:
|
51 |
+
self.backward_hook_handle.remove()
|
52 |
+
self.forward_hook_handle = None
|
53 |
+
self.backward_hook_handle = None
|
54 |
+
self.gradients = None
|
55 |
+
self.activations = None
|
56 |
+
|
57 |
+
def generate(self, input_tensor, class_idx, num_samples=5, stdev_spread=0.15):
|
58 |
+
if self.forward_hook_handle is None or self.backward_hook_handle is None:
|
59 |
+
self._register_hooks()
|
60 |
+
|
61 |
+
self.model.zero_grad()
|
62 |
+
|
63 |
+
try:
|
64 |
+
input_tensor.requires_grad_(True)
|
65 |
+
output = self.model(input_tensor)
|
66 |
+
class_score = output[:, class_idx]
|
67 |
+
class_score.backward()
|
68 |
+
|
69 |
+
if self.gradients is None or self.activations is None:
|
70 |
+
print(f"Warning: Gradients or activations are None for layer {self.target_layer}. Using fallback CAM.")
|
71 |
+
h, w = input_tensor.shape[-2:]
|
72 |
+
fallback_h, fallback_w = h // 16, w // 16
|
73 |
+
return np.ones((fallback_h, fallback_w), dtype=np.float32) * 0.5
|
74 |
+
|
75 |
+
if self.method == "gradcam":
|
76 |
+
cam_result = self._standard_gradcam()
|
77 |
+
else:
|
78 |
+
raise ValueError(f"Unsupported CAM method: {self.method}")
|
79 |
+
|
80 |
+
self.gradients = None
|
81 |
+
self.activations = None
|
82 |
+
input_tensor.requires_grad_(False)
|
83 |
+
self.model.zero_grad()
|
84 |
+
|
85 |
+
return cam_result
|
86 |
+
|
87 |
+
except Exception as e:
|
88 |
+
print(f"Error in AdvancedGradCAM.generate: {str(e)}")
|
89 |
+
import traceback
|
90 |
+
traceback.print_exc()
|
91 |
+
h, w = input_tensor.shape[-2:]
|
92 |
+
fallback_h, fallback_w = h // 16, w // 16
|
93 |
+
return np.ones((fallback_h, fallback_w), dtype=np.float32) * 0.5
|
94 |
+
|
95 |
+
def _standard_gradcam(self):
|
96 |
+
gradients = self.gradients.cpu().numpy()
|
97 |
+
activations = self.activations.cpu().numpy()
|
98 |
+
|
99 |
+
if len(gradients.shape) != 4 or len(activations.shape) != 4:
|
100 |
+
print(f"Warning: Unexpected shape in GradCAM++. Gradients: {gradients.shape}, Activations: {activations.shape}. Using fallback.")
|
101 |
+
fallback_h, fallback_w = activations.shape[-2:] if len(activations.shape) >= 2 else (14, 14)
|
102 |
+
return np.ones((fallback_h, fallback_w), dtype=np.float32) * 0.5
|
103 |
+
|
104 |
+
grad_2 = gradients ** 2
|
105 |
+
grad_3 = gradients ** 3
|
106 |
+
epsilon = 1e-10
|
107 |
+
alpha_denom = 2 * grad_2 + np.sum(activations * grad_3, axis=(2, 3), keepdims=True)
|
108 |
+
alpha = grad_2 / (alpha_denom + epsilon)
|
109 |
+
positive_activations_gradients = np.maximum(gradients, 0)
|
110 |
+
weights = np.sum(alpha * positive_activations_gradients, axis=(2, 3))
|
111 |
+
|
112 |
+
cam = np.zeros(activations.shape[2:], dtype=np.float32)
|
113 |
+
for i, w in enumerate(weights[0]):
|
114 |
+
cam += w * activations[0, i, :, :]
|
115 |
+
|
116 |
+
cam = np.maximum(cam, 0)
|
117 |
+
if np.max(cam) > 0:
|
118 |
+
cam = cam / np.max(cam)
|
119 |
+
return cam
|
120 |
+
|
121 |
+
# Utility Functions
|
122 |
+
def overlay_cam_on_image(image, cam, face_box=None, alpha=0.5):
|
123 |
+
img_np = np.array(image.convert('RGB'))
|
124 |
+
h, w = img_np.shape[:2]
|
125 |
+
|
126 |
+
if face_box is not None:
|
127 |
+
x, y, fw, fh = map(int, face_box)
|
128 |
+
if fw <= 0 or fh <= 0:
|
129 |
+
print(f"Warning: Invalid face box dimensions {fw}x{fh}. Applying CAM to full image.")
|
130 |
+
face_box = None
|
131 |
+
else:
|
132 |
+
try:
|
133 |
+
face_cam_resized = cv2.resize(cam, (fw, fh))
|
134 |
+
except cv2.error as e:
|
135 |
+
print(f"Error resizing CAM to face box {fw}x{fh}: {e}. Applying CAM to full image.")
|
136 |
+
face_box = None
|
137 |
+
|
138 |
+
if face_box is not None:
|
139 |
+
x, y, fw, fh = map(int, face_box)
|
140 |
+
full_cam_heatmap = np.zeros((h, w), dtype=np.float32)
|
141 |
+
y_end = min(y + fh, h)
|
142 |
+
x_end = min(x + fw, w)
|
143 |
+
fh_clipped = y_end - y
|
144 |
+
fw_clipped = x_end - x
|
145 |
+
if fh_clipped > 0 and fw_clipped > 0:
|
146 |
+
full_cam_heatmap[y:y_end, x:x_end] = face_cam_resized[:fh_clipped, :fw_clipped]
|
147 |
+
else:
|
148 |
+
print("Warning: Face box calculation resulted in zero area for heatmap placement.")
|
149 |
+
heatmap_colored = cv2.applyColorMap(np.uint8(255 * full_cam_heatmap), cv2.COLORMAP_JET)
|
150 |
+
heatmap_colored = cv2.cvtColor(heatmap_colored, cv2.COLOR_BGR2RGB)
|
151 |
+
else:
|
152 |
+
try:
|
153 |
+
cam_resized = cv2.resize(cam, (w, h))
|
154 |
+
except cv2.error as e:
|
155 |
+
print(f"Error resizing CAM to full image size {w}x{h}: {e}. Skipping overlay.")
|
156 |
+
return image
|
157 |
+
heatmap_colored = cv2.applyColorMap(np.uint8(255 * cam_resized), cv2.COLORMAP_JET)
|
158 |
+
heatmap_colored = cv2.cvtColor(heatmap_colored, cv2.COLOR_BGR2RGB)
|
159 |
+
|
160 |
+
overlayed_img = cv2.addWeighted(img_np, 1 - alpha, heatmap_colored, alpha, 0)
|
161 |
+
return Image.fromarray(overlayed_img)
|
162 |
+
|
163 |
+
def save_comparison(image, cam, overlay, face_box=None):
|
164 |
+
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
|
165 |
+
|
166 |
+
axes[0].imshow(image)
|
167 |
+
axes[0].set_title("Original")
|
168 |
+
if face_box is not None:
|
169 |
+
x, y, w, h = map(int, face_box)
|
170 |
+
if w > 0 and h > 0:
|
171 |
+
rect = plt.Rectangle((x, y), w, h, edgecolor='lime', linewidth=2, fill=False)
|
172 |
+
axes[0].add_patch(rect)
|
173 |
+
axes[0].axis("off")
|
174 |
+
|
175 |
+
if face_box is not None:
|
176 |
+
x, y, w, h = map(int, face_box)
|
177 |
+
if w > 0 and h > 0:
|
178 |
+
try:
|
179 |
+
cam_display = cv2.resize(cam, (w, h))
|
180 |
+
img_h, img_w = np.array(image).shape[:2]
|
181 |
+
full_cam_display = np.zeros((img_h, img_w))
|
182 |
+
y_end = min(y + h, img_h)
|
183 |
+
x_end = min(x + w, img_w)
|
184 |
+
h_clipped = y_end - y
|
185 |
+
w_clipped = x_end - x
|
186 |
+
if h_clipped > 0 and w_clipped > 0:
|
187 |
+
full_cam_display[y:y_end, x:x_end] = cam_display[:h_clipped, :w_clipped]
|
188 |
+
axes[1].imshow(full_cam_display, cmap="jet")
|
189 |
+
except cv2.error:
|
190 |
+
axes[1].imshow(cam, cmap="jet")
|
191 |
+
else:
|
192 |
+
axes[1].imshow(cam, cmap="jet")
|
193 |
+
else:
|
194 |
+
axes[1].imshow(cam, cmap="jet")
|
195 |
+
|
196 |
+
axes[1].set_title("CAM")
|
197 |
+
axes[1].axis("off")
|
198 |
+
|
199 |
+
axes[2].imshow(overlay)
|
200 |
+
axes[2].set_title("Overlay")
|
201 |
+
axes[2].axis("off")
|
202 |
+
|
203 |
+
plt.tight_layout()
|
204 |
+
|
205 |
+
buf = io.BytesIO()
|
206 |
+
plt.savefig(buf, format="png", bbox_inches="tight")
|
207 |
+
plt.close()
|
208 |
+
buf.seek(0)
|
209 |
+
return Image.open(buf)
|
210 |
+
#load xception model
|
211 |
+
def load_xception_model(model_repo="drg31/xception", model_filename="final_xception_model.pth", num_classes=2):
|
212 |
+
try:
|
213 |
+
model_path = hf_hub_download(repo_id=model_repo, filename=model_filename)
|
214 |
+
print(f"Model downloaded to: {model_path}")
|
215 |
+
except Exception as e:
|
216 |
+
print(f"Error downloading model from Hugging Face Hub ({model_repo}/{model_filename}): {e}")
|
217 |
+
raise
|
218 |
+
|
219 |
+
model = create_model("xception", pretrained=False, num_classes=num_classes)
|
220 |
+
print(f"Created Xception model with {num_classes} output classes.")
|
221 |
+
|
222 |
+
try:
|
223 |
+
checkpoint = torch.load(model_path, map_location=torch.device('cpu'), weights_only=False)
|
224 |
+
print(f"Checkpoint loaded successfully from {model_path} (with weights_only=False).")
|
225 |
+
except Exception as e:
|
226 |
+
print(f"Error loading checkpoint from {model_path}: {e}")
|
227 |
+
raise
|
228 |
+
|
229 |
+
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
|
230 |
+
checkpoint_state_dict = checkpoint['state_dict']
|
231 |
+
print("Extracted state_dict from checkpoint dictionary.")
|
232 |
+
else:
|
233 |
+
checkpoint_state_dict = checkpoint
|
234 |
+
print("Using checkpoint directly as state_dict.")
|
235 |
+
|
236 |
+
cleaned_state_dict = {}
|
237 |
+
for k, v in checkpoint_state_dict.items():
|
238 |
+
name = k.replace('module.', '')
|
239 |
+
cleaned_state_dict[name] = v
|
240 |
+
print(f"Cleaned state_dict contains {len(cleaned_state_dict)} keys (after removing 'module.' prefix).")
|
241 |
+
|
242 |
+
print("Loading state_dict with strict=False...")
|
243 |
+
report = model.load_state_dict(cleaned_state_dict, strict=False)
|
244 |
+
print(f"Load report - Missing keys: {report.missing_keys}")
|
245 |
+
print(f"Load report - Unexpected keys: {report.unexpected_keys}")
|
246 |
+
|
247 |
+
print("Model state loaded.")
|
248 |
+
model.eval()
|
249 |
+
return model
|
250 |
+
|
251 |
+
def get_target_layer_xception(model):
|
252 |
+
target_layer_name = "block12.rep.6" # Deeper layer for semantic features
|
253 |
+
if target_layer_name not in dict([*model.named_modules()]):
|
254 |
+
print(f"Warning: Target layer '{target_layer_name}' not found. Trying 'block11.rep.2'.")
|
255 |
+
target_layer_name = "block11.rep.2"
|
256 |
+
if target_layer_name not in dict([*model.named_modules()]):
|
257 |
+
print(f"Warning: Fallback layer '{target_layer_name}' not found. Trying 'act4'.")
|
258 |
+
target_layer_name = "act4"
|
259 |
+
if target_layer_name not in dict([*model.named_modules()]):
|
260 |
+
raise ValueError("Could not find suitable target layer for GradCAM in Xception model.")
|
261 |
+
print(f"Using target layer: {target_layer_name}")
|
262 |
+
return target_layer_name
|
263 |
+
|
264 |
+
# Main Visualization Function
|
265 |
+
def generate_smoothgrad_visualizations_xception(model, image, target_class=None, face_only=True, num_samples=5, stdev_spread=0.15):
|
266 |
+
print("\n--- Starting Prediction and Grad-CAM ---")
|
267 |
+
try:
|
268 |
+
predicted_class_idx, confidence = predict_image(model, image, face_only)
|
269 |
+
except Exception as pred_e:
|
270 |
+
print(f"Error during prediction: {pred_e}")
|
271 |
+
import traceback
|
272 |
+
traceback.print_exc()
|
273 |
+
return None, None, None, None
|
274 |
+
|
275 |
+
if target_class is None:
|
276 |
+
cam_target_class = predicted_class_idx
|
277 |
+
print(f"CAM Target Class: Using predicted class index {cam_target_class} ({'real' if cam_target_class == 0 else 'fake'})")
|
278 |
+
elif target_class in [0, 1]:
|
279 |
+
cam_target_class = target_class
|
280 |
+
print(f"CAM Target Class: Using specified class index {cam_target_class} ({'real' if cam_target_class == 0 else 'fake'})")
|
281 |
+
else:
|
282 |
+
print(f"Warning: Invalid target_class specified ({target_class}). Defaulting to predicted class index {predicted_class_idx}.")
|
283 |
+
cam_target_class = predicted_class_idx
|
284 |
+
|
285 |
+
device = next(model.parameters()).device
|
286 |
+
model.eval()
|
287 |
+
|
288 |
+
IMAGE_SIZE = 299
|
289 |
+
transform = transforms.Compose([
|
290 |
+
transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)),
|
291 |
+
transforms.ToTensor(),
|
292 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
293 |
+
])
|
294 |
+
|
295 |
+
dataset = ImageDataset(image, transform=transform, face_only=face_only)
|
296 |
+
input_tensor, original_image, face_box = dataset[0]
|
297 |
+
input_tensor = input_tensor.unsqueeze(0).to(device)
|
298 |
+
print(f"Input tensor for CAM shape: {input_tensor.shape}, Face box: {face_box}")
|
299 |
+
|
300 |
+
raw_cam = None
|
301 |
+
try:
|
302 |
+
target_layer = get_target_layer_xception(model)
|
303 |
+
print(f"Using target layer for CAM: {target_layer}")
|
304 |
+
cam_extractor = AdvancedGradCAM(model, target_layer, method="gradcam")
|
305 |
+
raw_cam = cam_extractor.generate(input_tensor, cam_target_class, num_samples=num_samples, stdev_spread=stdev_spread)
|
306 |
+
except Exception as cam_e:
|
307 |
+
print(f"Error during CAM generation: {cam_e}")
|
308 |
+
import traceback
|
309 |
+
traceback.print_exc()
|
310 |
+
|
311 |
+
cam_heatmap_img, overlay_img, comparison_img = None, None, None
|
312 |
+
if raw_cam is None or not isinstance(raw_cam, np.ndarray) or raw_cam.size == 0:
|
313 |
+
print("CAM generation failed or produced invalid result. Skipping visualization.")
|
314 |
+
else:
|
315 |
+
try:
|
316 |
+
print("Generating visualizations...")
|
317 |
+
img_h, img_w = np.array(original_image).shape[:2]
|
318 |
+
heatmap_display_np = np.zeros((img_h, img_w), dtype=np.float32)
|
319 |
+
if face_box:
|
320 |
+
x, y, w_fb, h_fb = map(int, face_box)
|
321 |
+
if w_fb > 0 and h_fb > 0:
|
322 |
+
cam_resized_face = cv2.resize(raw_cam, (w_fb, h_fb), interpolation=cv2.INTER_LINEAR)
|
323 |
+
y_end, x_end = min(y + h_fb, img_h), min(x + w_fb, img_w)
|
324 |
+
h_clip, w_clip = y_end - y, x_end - x
|
325 |
+
if h_clip > 0 and w_clip > 0:
|
326 |
+
heatmap_display_np[y:y_end, x:x_end] = cam_resized_face[:h_clip, :w_clip]
|
327 |
+
else:
|
328 |
+
heatmap_display_np = cv2.resize(raw_cam, (img_w, img_h), interpolation=cv2.INTER_LINEAR)
|
329 |
+
else:
|
330 |
+
heatmap_display_np = cv2.resize(raw_cam, (img_w, img_h), interpolation=cv2.INTER_LINEAR)
|
331 |
+
|
332 |
+
min_h, max_h = np.min(heatmap_display_np), np.max(heatmap_display_np)
|
333 |
+
if max_h > min_h:
|
334 |
+
heatmap_norm = (heatmap_display_np - min_h) / (max_h - min_h)
|
335 |
+
else:
|
336 |
+
heatmap_norm = np.zeros_like(heatmap_display_np)
|
337 |
+
heatmap_rgb = (plt.cm.jet(heatmap_norm)[:, :, :3] * 255).astype(np.uint8)
|
338 |
+
cam_heatmap_img = Image.fromarray(heatmap_rgb)
|
339 |
+
print(" Heatmap generated.")
|
340 |
+
|
341 |
+
overlay_img = overlay_cam_on_image(original_image, raw_cam, face_box)
|
342 |
+
print(" Overlay generated.")
|
343 |
+
|
344 |
+
if overlay_img:
|
345 |
+
comparison_img = save_comparison(original_image, raw_cam, overlay_img, face_box)
|
346 |
+
print(" Comparison generated.")
|
347 |
+
else:
|
348 |
+
print(" Skipping comparison image because overlay failed.")
|
349 |
+
|
350 |
+
except Exception as vis_e:
|
351 |
+
print(f"Error during visualization generation: {vis_e}")
|
352 |
+
import traceback
|
353 |
+
traceback.print_exc()
|
354 |
+
|
355 |
+
print("--- Prediction and Grad-CAM Finished ---")
|
356 |
+
return raw_cam, cam_heatmap_img, overlay_img, comparison_img
|
357 |
+
|
358 |
+
# Face Detection Dataset
|
359 |
+
class ImageDataset(torch.utils.data.Dataset):
|
360 |
+
def __init__(self, image, transform=None, face_only=True):
|
361 |
+
self.image = image
|
362 |
+
self.transform = transform
|
363 |
+
self.face_only = face_only
|
364 |
+
try:
|
365 |
+
self.face_detector = cv2.CascadeClassifier(
|
366 |
+
cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
|
367 |
+
)
|
368 |
+
if self.face_detector.empty():
|
369 |
+
raise IOError("Failed to load cascade file")
|
370 |
+
except Exception as e:
|
371 |
+
print(f"Error loading Haar Cascade: {e}. Face detection might fail.")
|
372 |
+
class DummyDetector:
|
373 |
+
def detectMultiScale(self, *args, **kwargs): return []
|
374 |
+
self.face_detector = DummyDetector()
|
375 |
+
|
376 |
+
def __len__(self):
|
377 |
+
return 1
|
378 |
+
|
379 |
+
def detect_face(self, image_np):
|
380 |
+
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
381 |
+
faces = self.face_detector.detectMultiScale(gray, 1.1, 5)
|
382 |
+
if len(faces) == 0:
|
383 |
+
print("No face detected, using full image as fallback.")
|
384 |
+
h, w = image_np.shape[:2]
|
385 |
+
return (0, 0, w, h), image_np
|
386 |
+
areas = [w * h for (x, y, w, h) in faces]
|
387 |
+
idx = np.argmax(areas) # Select largest face
|
388 |
+
x, y, w, h = faces[idx]
|
389 |
+
pad_x, pad_y = int(w * 0.05), int(h * 0.05)
|
390 |
+
x1, y1 = max(0, x - pad_x), max(0, y - pad_y)
|
391 |
+
x2, y2 = min(image_np.shape[1], x + w + pad_x), min(image_np.shape[0], y + h + pad_y)
|
392 |
+
face_img = image_np[y1:y2, x1:x2]
|
393 |
+
return (x1, y1, x2 - x1, y2 - y1), face_img
|
394 |
+
|
395 |
+
def __getitem__(self, idx):
|
396 |
+
image_np = np.array(self.image)
|
397 |
+
original_image = self.image.copy()
|
398 |
+
face_box_final = None
|
399 |
+
processed_image = original_image
|
400 |
+
|
401 |
+
if self.face_only:
|
402 |
+
try:
|
403 |
+
face_box, face_img_np = self.detect_face(image_np)
|
404 |
+
if face_img_np.size == 0 or face_box[2] <= 0 or face_box[3] <= 0:
|
405 |
+
print("Warning: Face detection returned empty or invalid region. Using full image.")
|
406 |
+
face_box_final = None
|
407 |
+
processed_image = original_image
|
408 |
+
else:
|
409 |
+
processed_image = Image.fromarray(face_img_np)
|
410 |
+
face_box_final = face_box
|
411 |
+
except Exception as e:
|
412 |
+
print(f"Error during face detection: {e}. Using full image.")
|
413 |
+
face_box_final = None
|
414 |
+
processed_image = original_image
|
415 |
+
else:
|
416 |
+
face_box_final = None
|
417 |
+
processed_image = original_image
|
418 |
+
|
419 |
+
if self.transform:
|
420 |
+
tensor = self.transform(processed_image)
|
421 |
+
else:
|
422 |
+
tensor = transforms.ToTensor()(processed_image)
|
423 |
+
|
424 |
+
return tensor, original_image, face_box_final
|
425 |
+
|
426 |
+
def predict_image(model, image, face_only=True):
|
427 |
+
device = next(model.parameters()).device
|
428 |
+
model.eval()
|
429 |
+
|
430 |
+
IMAGE_SIZE = 299
|
431 |
+
transform = transforms.Compose([
|
432 |
+
transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)),
|
433 |
+
transforms.ToTensor(),
|
434 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
435 |
+
])
|
436 |
+
|
437 |
+
dataset = ImageDataset(image, transform=transform, face_only=face_only)
|
438 |
+
input_tensor, _, _ = dataset[0]
|
439 |
+
input_tensor = input_tensor.unsqueeze(0).to(device)
|
440 |
+
|
441 |
+
with torch.no_grad():
|
442 |
+
logits = model(input_tensor)
|
443 |
+
probabilities = F.softmax(logits, dim=1)
|
444 |
+
|
445 |
+
pred_prob = probabilities[0].max().item()
|
446 |
+
pred_class_idx = probabilities[0].argmax().item()
|
447 |
+
pred_label = "real" if pred_class_idx == 0 else "fake"
|
448 |
+
|
449 |
+
if pred_prob < 0.7: # Example threshold
|
450 |
+
print(f"Warning: Low confidence ({pred_prob:.4f}) detected. Model may need fine-tuning.")
|
451 |
+
|
452 |
+
print(f"--- Prediction ---")
|
453 |
+
print(f"Input Tensor Shape: {input_tensor.shape}")
|
454 |
+
print(f"Logits: {logits.cpu().numpy()}")
|
455 |
+
print(f"Probabilities: {probabilities.cpu().numpy()}")
|
456 |
+
print(f"Predicted Class: {pred_label} (Index: {pred_class_idx})")
|
457 |
+
print(f"Confidence: {pred_prob:.4f}")
|
458 |
+
print(f"--------------------")
|
459 |
+
|
460 |
+
return pred_class_idx, pred_prob
|