Spaces:
Sleeping
Sleeping
import torch | |
print(torch.cuda.is_available()) | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments | |
from datasets import load_dataset | |
# Load the IMDb dataset | |
dataset = load_dataset('imdb') | |
# Initialize the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased') | |
model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=2) | |
# Tokenize the dataset | |
def tokenize_function(examples): | |
return tokenizer(examples['text'], padding="max_length", truncation=True) | |
tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
# Set up training arguments | |
training_args = TrainingArguments( | |
output_dir="./results", | |
evaluation_strategy="epoch", | |
learning_rate=2e-5, | |
per_device_train_batch_size=16, | |
per_device_eval_batch_size=16, | |
num_train_epochs=1, # Start with fewer epochs for quicker runs | |
weight_decay=0.01, | |
) | |
# Initialize the Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_datasets["train"].shuffle(seed=42).select(range(1000)), # Use a subset for quicker runs | |
eval_dataset=tokenized_datasets["test"].shuffle(seed=42).select(range(1000)), | |
) | |
# Train the model | |
trainer.train() | |
# Evaluate the model | |
results = trainer.evaluate() | |
print(results) | |