import torch print(torch.cuda.is_available()) from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments from datasets import load_dataset # Load the IMDb dataset dataset = load_dataset('imdb') # Initialize the tokenizer and model tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased') model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=2) # Tokenize the dataset def tokenize_function(examples): return tokenizer(examples['text'], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) # Set up training arguments training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=1, # Start with fewer epochs for quicker runs weight_decay=0.01, ) # Initialize the Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"].shuffle(seed=42).select(range(1000)), # Use a subset for quicker runs eval_dataset=tokenized_datasets["test"].shuffle(seed=42).select(range(1000)), ) # Train the model trainer.train() # Evaluate the model results = trainer.evaluate() print(results)