Spaces:
Running
Running
File size: 3,047 Bytes
35dac1d 120d6fd 35dac1d 120d6fd 53881d8 120d6fd 53881d8 a83407e 120d6fd 53881d8 a83407e 53881d8 a83407e 35dac1d a83407e 35dac1d 53881d8 35dac1d 120d6fd 35dac1d 120d6fd 53881d8 35dac1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import os
from dotenv import load_dotenv
import streamlit as st
import webchat
import utils
# URL of the hosted LLMs is hardcoded because at this time all LLMs share the same endpoint
url = "https://us-south.ml.cloud.ibm.com"
# These global variables will be updated in get_credentials() function
watsonx_project_id = ""
api_key = ""
def main():
utils.get_credentials()
st.set_page_config(layout="wide", page_title="RAG Web Demo", page_icon="")
utils.load_css("styles.css")
# Streamlit app title with style
st.markdown("""
<div class="menu-bar">
<h1>IBM watsonx.ai - webchat</h1>
</div>
<div style="margin-top: 20px;"><p>Insert the website you want to chat with and ask your question.</p></div>
""", unsafe_allow_html=True)
# Sidebar for settings
st.sidebar.header("Settings")
st.sidebar.markdown("Insert your credentials of [IBM Cloud](https://cloud.ibm.com/login) for watsonx.ai \n The data is not saved in th server. Your data is secured.", unsafe_allow_html=True)
st.sidebar.markdown("<hr>", unsafe_allow_html=True)
api_key_input = st.sidebar.text_input("API Key", api_key, type="password")
project_id_input = st.sidebar.text_input("Project ID", watsonx_project_id)
# Update credentials if provided by the user
if api_key_input:
globals()["api_key"] = api_key_input
if project_id_input:
globals()["watsonx_project_id"] = project_id_input
# Main input area
user_url = st.text_input('Provide a URL')
# UI component to enter the question
question = st.text_area('Question', height=100)
button_clicked = st.button("Answer the question")
st.markdown("<hr>", unsafe_allow_html=True)
st.subheader("Response")
collection_name="base"
if globals()["api_key"] and globals()["watsonx_project_id"]:
# Provide a unique name for this website (lower case). Use the same name for the same URL to avoid loading data multiple times.
#collection_name = utils.create_collection_name(user_url)
if button_clicked and user_url:
# Invoke the LLM when the button is clicked
response = webchat.answer_questions_from_web(api_key, watsonx_project_id, user_url, question, collection_name)
st.write(response)
else:
st.warning("Please provide API Key and Project ID in the sidebar.")
# Cleaning Vector Database
st.sidebar.markdown("<hr>", unsafe_allow_html=True)
st.sidebar.header("Memory")
clean_button_clicked = st.sidebar.button("Clean Memory")
if clean_button_clicked :
if collection_name: # Check if collection_name is defined and not empty
utils.clear_collection(collection_name)
st.sidebar.success("Memory cleared successfully!")
#st.sidebar.markdown(collection_name, unsafe_allow_html=True)
print("Memory cleared successfully!")
else:
st.sidebar.error("Collection name is not defined or empty.")
if __name__ == "__main__":
main()
|