ruslanmv commited on
Commit
35dac1d
·
0 Parent(s):

First commit

Browse files
Files changed (7) hide show
  1. .envTemplate +2 -0
  2. .gitignore +196 -0
  3. README.md +125 -0
  4. env.bat +1 -0
  5. env.sh +1 -0
  6. streamlit_webchat.py +51 -0
  7. webchat.py +221 -0
.envTemplate ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ API_KEY=your_api_key
2
+ PROJECT_ID=your_project_id
.gitignore ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ .env
3
+ ### Python ###
4
+ # Byte-compiled / optimized / DLL files
5
+ __pycache__/
6
+ *.py[cod]
7
+ *$py.class
8
+
9
+ # C extensions
10
+ *.so
11
+
12
+ # Distribution / packaging
13
+ .Python
14
+ build/
15
+ develop-eggs/
16
+ dist/
17
+ downloads/
18
+ eggs/
19
+ .eggs/
20
+ lib/
21
+ lib64/
22
+ parts/
23
+ sdist/
24
+ var/
25
+ wheels/
26
+ share/python-wheels/
27
+ *.egg-info/
28
+ .installed.cfg
29
+ *.egg
30
+ MANIFEST
31
+
32
+ # PyInstaller
33
+ # Usually these files are written by a python script from a template
34
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
35
+ *.manifest
36
+ *.spec
37
+
38
+ # Installer logs
39
+ pip-log.txt
40
+ pip-delete-this-directory.txt
41
+
42
+ # Unit test / coverage reports
43
+ htmlcov/
44
+ .tox/
45
+ .nox/
46
+ .coverage
47
+ .coverage.*
48
+ .cache
49
+ nosetests.xml
50
+ coverage.xml
51
+ *.cover
52
+ *.py,cover
53
+ .hypothesis/
54
+ .pytest_cache/
55
+ cover/
56
+
57
+ # Translations
58
+ *.mo
59
+ *.pot
60
+
61
+ # Django stuff:
62
+ *.log
63
+ local_settings.py
64
+ db.sqlite3
65
+ db.sqlite3-journal
66
+
67
+ # Flask stuff:
68
+ instance/
69
+ .webassets-cache
70
+
71
+ # Scrapy stuff:
72
+ .scrapy
73
+
74
+ # Sphinx documentation
75
+ docs/_build/
76
+
77
+ # PyBuilder
78
+ .pybuilder/
79
+ target/
80
+
81
+ # Jupyter Notebook
82
+ .ipynb_checkpoints
83
+
84
+ # IPython
85
+ profile_default/
86
+ ipython_config.py
87
+
88
+ .venv/
89
+ # pyenv
90
+ # For a library or package, you might want to ignore these files since the code is
91
+ # intended to run in multiple environments; otherwise, check them in:
92
+ # .python-version
93
+
94
+ # pipenv
95
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
96
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
97
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
98
+ # install all needed dependencies.
99
+ #Pipfile.lock
100
+
101
+ # poetry
102
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
103
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
104
+ # commonly ignored for libraries.
105
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
106
+ #poetry.lock
107
+
108
+ # pdm
109
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
110
+ #pdm.lock
111
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
112
+ # in version control.
113
+ # https://pdm.fming.dev/#use-with-ide
114
+ .pdm.toml
115
+
116
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
117
+ __pypackages__/
118
+
119
+ # Celery stuff
120
+ celerybeat-schedule
121
+ celerybeat.pid
122
+
123
+ # SageMath parsed files
124
+ *.sage.py
125
+
126
+ # Environments
127
+ .env
128
+ .venv
129
+ env/
130
+ venv/
131
+ ENV/
132
+ env.bak/
133
+ venv.bak/
134
+
135
+ # Spyder project settings
136
+ .spyderproject
137
+ .spyproject
138
+
139
+ # Rope project settings
140
+ .ropeproject
141
+
142
+ # mkdocs documentation
143
+ /site
144
+
145
+ # mypy
146
+ .mypy_cache/
147
+ .dmypy.json
148
+ dmypy.json
149
+
150
+ # Pyre type checker
151
+ .pyre/
152
+
153
+ # pytype static type analyzer
154
+ .pytype/
155
+
156
+ # Cython debug symbols
157
+ cython_debug/
158
+
159
+ # PyCharm
160
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
161
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
162
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
163
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
164
+ #.idea/
165
+
166
+ ### Python Patch ###
167
+ # Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration
168
+ poetry.toml
169
+
170
+ # ruff
171
+ .ruff_cache/
172
+
173
+ # LSP config files
174
+ pyrightconfig.json
175
+
176
+ ### VisualStudioCode ###
177
+ .vscode/*
178
+ !.vscode/settings.json
179
+ !.vscode/tasks.json
180
+ !.vscode/launch.json
181
+ !.vscode/extensions.json
182
+ !.vscode/*.code-snippets
183
+
184
+ # Local History for Visual Studio Code
185
+ .history/
186
+
187
+ # Built Visual Studio Code Extensions
188
+ *.vsix
189
+
190
+ ### VisualStudioCode Patch ###
191
+ # Ignore all local history of files
192
+ .history
193
+ .ionide
194
+
195
+ # End of https://www.toptal.com/developers/gitignore/api/visualstudiocode,python
196
+ Untitled.java
README.md ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## How to Chat with a Website Using WatsonX
2
+
3
+ Hello everyone! Today, we're going to create an exciting web app that allows us to chat with any website using Watsonx.ai.
4
+
5
+ Watsonx.ai is a powerful SaaS service that leverages the full capabilities of IBM's cloud infrastructure. This tool provides a robust platform for integrating advanced AI functionalities into your applications, making it easier than ever to enhance user interactions with intelligent, context-aware responses.
6
+
7
+
8
+ ## Step 1: Environment Creation
9
+
10
+ There are several ways to create an environment in Python. Follow these steps to set up your environment locally:
11
+
12
+ 1. **Install Python 3.10**
13
+ - Download and install Python 3.10 from [here](https://www.python.org/downloads/windows/).
14
+
15
+ 2. **Create a Virtual Environment**
16
+ - Open your terminal or command prompt and navigate to your project directory.
17
+ - Run the following command to create a virtual environment:
18
+ ```bash
19
+ python -m venv .venv
20
+ ```
21
+ - This command creates a new directory named `.venv` in your current working directory.
22
+
23
+ 3. **Activate the Virtual Environment**
24
+ - **Windows:**
25
+ ```bash
26
+ .venv\Scripts\activate.bat
27
+ ```
28
+ - **Linux:**
29
+ ```bash
30
+ source .venv/bin/activate
31
+ ```
32
+
33
+ 4. **Upgrade pip**
34
+ - Run the following command to upgrade pip:
35
+ ```bash
36
+ python -m pip install --upgrade pip
37
+ ```
38
+
39
+ 5. **Optional: Install JupyterLab for Development and Testing**
40
+ - If you want to use JupyterLab, install it by running:
41
+ ```bash
42
+ pip install ipykernel jupyterlab
43
+ ```
44
+
45
+ ## Step 2: Setup Libraries
46
+
47
+ Once you have your environment set up and activated, you need to install the necessary libraries. Run the following command to install the required packages:
48
+
49
+ ```bash
50
+ pip install streamlit python-dotenv ibm_watson_machine_learning requests chromadb
51
+ ```
52
+
53
+ IMPORTANT: Be aware of the disk space that will be taken up by documents when they're loaded into
54
+ chromadb on your laptop. The size in chroma will likely be the same as .txt file size
55
+
56
+
57
+
58
+
59
+ ## Step 3: Getting API from IBM Cloud
60
+
61
+ ### Obtaining an API Key
62
+
63
+ To obtain an API key from IBM Cloud, follow these steps:
64
+
65
+ 1. **Sign In**
66
+ - Go to [IBM Cloud](https://cloud.ibm.com) and sign in to your account.
67
+
68
+ 2. **Navigate to Account Settings**
69
+ - Click on your account name in the top right corner of the IBM Cloud dashboard.
70
+ - From the dropdown menu, select "Manage" to go to the Account settings.
71
+
72
+ 3. **Access API Keys**
73
+ - In the left-hand menu, click on “IBM Cloud API keys” under the “Access (IAM)” section.
74
+
75
+ 4. **Create an API Key**
76
+ - On the “API keys” page, click on the “Create an IBM Cloud API key” button.
77
+ - Provide a name and an optional description for your API key.
78
+ - Select the appropriate access policies if needed.
79
+ - Click on the “Create” button to generate the API key.
80
+
81
+ 5. **Save Your API Key**
82
+ - Once the API key is created, a dialog box displaying the API key value will appear.
83
+ - Make sure to copy and save this key as it will not be shown again.
84
+
85
+ > Note: The steps above are based on the current IBM Cloud interface. They may vary slightly depending on any updates or changes. If you encounter any difficulties or if the steps do not match your IBM Cloud interface, refer to the IBM Cloud documentation or contact IBM support for assistance.
86
+
87
+ ### Retrieving the Project ID for IBM Watsonx
88
+
89
+ To obtain the Project ID for IBM Watsonx, you will need access to the IBM Watson Machine Learning (WML) service. Follow these steps:
90
+
91
+ 1. **Log In**
92
+ - Log in to the [IBM Cloud Console](https://cloud.ibm.com) using your IBM Cloud credentials.
93
+
94
+ 2. **Navigate to Watson Machine Learning**
95
+ - Go to the Watson Machine Learning service.
96
+
97
+ 3. **Access Service Instance**
98
+ - Click on the service instance associated with your Watsonx project.
99
+
100
+ 4. **Find Service Credentials**
101
+ - In the left-hand menu, click on “Service credentials”.
102
+ - Under the “Credentials” tab, you will find a list of service credentials associated with your Watsonx project.
103
+
104
+ 5. **Retrieve Project ID**
105
+ - Click on the name of the service credential you want to use.
106
+ - In the JSON object, find the “project_id” field. The value of this field is your Project ID.
107
+
108
+ ### Adding Credentials to Your Project
109
+
110
+ Add the API key and Project ID to the `.env` file in your project directory:
111
+
112
+ ```plaintext
113
+ API_KEY=your_api_key
114
+ PROJECT_ID=your_project_id
115
+ ```
116
+
117
+ This will configure your project to connect to Watsonx.ai using the obtained credentials.
118
+
119
+ Step 4: Creation of app.py
120
+
121
+ In the followig section we are going to invoke Large Language Models (LLMs) deployed in watsonx.ai. Documentation: [here](https://ibm.github.io/watson-machine-learning-sdk/foundation_models.html)
122
+ This example shows a Question and Answer use case for a provided web site
123
+
124
+
125
+
env.bat ADDED
@@ -0,0 +1 @@
 
 
1
+ .venv\Scripts\activate.bat
env.sh ADDED
@@ -0,0 +1 @@
 
 
1
+ source .venv/Scripts/activate
streamlit_webchat.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # For reading credentials from the .env file
2
+ import os
3
+ from dotenv import load_dotenv
4
+ import streamlit as st
5
+ import webchat
6
+ # URL of the hosted LLMs is hardcoded because at this time all LLMs share the same endpoint
7
+ url = "https://us-south.ml.cloud.ibm.com"
8
+
9
+ # These global variables will be updated in get_credentials() function
10
+ watsonx_project_id = ""
11
+ # Replace with your IBM Cloud key
12
+ api_key = ""
13
+
14
+ def get_credentials():
15
+
16
+ load_dotenv()
17
+ # Update the global variables that will be used for authentication in another function
18
+ globals()["api_key"] = os.getenv("api_key", None)
19
+ globals()["watsonx_project_id"] = os.getenv("project_id", None)
20
+
21
+
22
+ def main():
23
+
24
+ # Get the API key and project id and update global variables
25
+ get_credentials()
26
+
27
+ # Use the full page instead of a narrow central column
28
+ st.set_page_config(layout="wide")
29
+
30
+ # Streamlit app title
31
+ st.title("🌠Demo of RAG with a Web page")
32
+
33
+ user_url = st.text_input('Provide a URL')
34
+
35
+ collection_name = st.text_input('Provide a unique name for this website (lower case). Use the same name for the same URL to avoid loading data multiple times.')
36
+
37
+ # UI component to enter the question
38
+ question = st.text_area('Question',height=100)
39
+ button_clicked = st.button("Answer the question")
40
+
41
+ st.subheader("Response")
42
+
43
+ # Invoke the LLM when the button is clicked
44
+ if button_clicked:
45
+ response = webchat.answer_questions_from_web(api_key,watsonx_project_id,user_url,question,collection_name)
46
+ st.write(response)
47
+
48
+ if __name__ == "__main__":
49
+ main()
50
+
51
+
webchat.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # For reading credentials from the .env file
2
+ import os
3
+ from dotenv import load_dotenv
4
+
5
+ from sentence_transformers import SentenceTransformer
6
+ from chromadb.api.types import EmbeddingFunction
7
+
8
+ # WML python SDK
9
+ from ibm_watson_machine_learning.foundation_models import Model
10
+ from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
11
+ from ibm_watson_machine_learning.foundation_models.utils.enums import ModelTypes, DecodingMethods
12
+
13
+ import requests
14
+ from bs4 import BeautifulSoup
15
+ import spacy
16
+ import chromadb
17
+ import en_core_web_md
18
+
19
+ # Important: hardcoding the API key in Python code is not a best practice. We are using
20
+ # this approach for the ease of demo setup. In a production application these variables
21
+ # can be stored in an .env or a properties file
22
+
23
+ # URL of the hosted LLMs is hardcoded because at this time all LLMs share the same endpoint
24
+ url = "https://us-south.ml.cloud.ibm.com"
25
+
26
+ # These global variables will be updated in get_credentials() function
27
+ watsonx_project_id = ""
28
+ # Replace with your IBM Cloud key
29
+ api_key = ""
30
+
31
+ def get_credentials():
32
+
33
+ load_dotenv()
34
+ # Update the global variables that will be used for authentication in another function
35
+ globals()["api_key"] = os.getenv("api_key", None)
36
+ globals()["watsonx_project_id"] = os.getenv("project_id", None)
37
+
38
+ # The get_model function creates an LLM model object with the specified parameters
39
+
40
+ def get_model(model_type, max_tokens, min_tokens, decoding, temperature, top_k, top_p):
41
+ generate_params = {
42
+ GenParams.MAX_NEW_TOKENS: max_tokens,
43
+ GenParams.MIN_NEW_TOKENS: min_tokens,
44
+ GenParams.DECODING_METHOD: decoding,
45
+ GenParams.TEMPERATURE: temperature,
46
+ GenParams.TOP_K: top_k,
47
+ GenParams.TOP_P: top_p,
48
+ }
49
+
50
+ model = Model(
51
+ model_id=model_type,
52
+ params=generate_params,
53
+ credentials={
54
+ "apikey": api_key,
55
+ "url": url
56
+ },
57
+ project_id=watsonx_project_id
58
+ )
59
+
60
+ return model
61
+
62
+ def get_model_test(model_type, max_tokens, min_tokens, decoding, temperature):
63
+ generate_params = {
64
+ GenParams.MAX_NEW_TOKENS: max_tokens,
65
+ GenParams.MIN_NEW_TOKENS: min_tokens,
66
+ GenParams.DECODING_METHOD: decoding,
67
+ GenParams.TEMPERATURE: temperature
68
+ }
69
+
70
+ model = Model(
71
+ model_id=model_type,
72
+ params=generate_params,
73
+ credentials={
74
+ "apikey": api_key,
75
+ "url": url
76
+ },
77
+ project_id=watsonx_project_id
78
+ )
79
+
80
+ return model
81
+
82
+
83
+ # Embedding function
84
+ class MiniLML6V2EmbeddingFunction(EmbeddingFunction):
85
+ MODEL = SentenceTransformer('all-MiniLM-L6-v2')
86
+
87
+ def __call__(self, texts):
88
+ return MiniLML6V2EmbeddingFunction.MODEL.encode(texts).tolist()
89
+
90
+
91
+ def extract_text(url):
92
+ try:
93
+ # Send an HTTP GET request to the URL
94
+ response = requests.get(url)
95
+
96
+ # Check if the request was successful
97
+ if response.status_code == 200:
98
+ # Parse the HTML content of the page using BeautifulSoup
99
+ soup = BeautifulSoup(response.text, 'html.parser')
100
+
101
+ # Extract contents of <p> elements
102
+ p_contents = [p.get_text() for p in soup.find_all('p')]
103
+
104
+ # Print the contents of <p> elements
105
+ print("\nContents of <p> elements: \n")
106
+ for content in p_contents:
107
+ print(content)
108
+ raw_web_text = " ".join(p_contents)
109
+ # remove \xa0 which is used in html to avoid words break acorss lines.
110
+ cleaned_text = raw_web_text.replace("\xa0", " ")
111
+ return cleaned_text
112
+
113
+ else:
114
+ print(f"Failed to retrieve the page. Status code: {response.status_code}")
115
+
116
+ except Exception as e:
117
+ print(f"An error occurred: {str(e)}")
118
+
119
+
120
+ def split_text_into_sentences(text):
121
+ nlp = spacy.load("en_core_web_md")
122
+ doc = nlp(text)
123
+ sentences = [sent.text for sent in doc.sents]
124
+ cleaned_sentences = [s.strip() for s in sentences]
125
+ return cleaned_sentences
126
+
127
+
128
+ def create_embedding(url, collection_name):
129
+ cleaned_text = extract_text(url)
130
+ cleaned_sentences = split_text_into_sentences(cleaned_text)
131
+
132
+ client = chromadb.Client()
133
+
134
+ collection = client.get_or_create_collection(collection_name)
135
+
136
+ # Upload text to chroma
137
+ collection.upsert(
138
+ documents=cleaned_sentences,
139
+ metadatas=[{"source": str(i)} for i in range(len(cleaned_sentences))],
140
+ ids=[str(i) for i in range(len(cleaned_sentences))],
141
+ )
142
+
143
+ return collection
144
+
145
+
146
+ def create_prompt(url, question, collection_name):
147
+ # Create embeddings for the text file
148
+ collection = create_embedding(url, collection_name)
149
+
150
+ # query relevant information
151
+ relevant_chunks = collection.query(
152
+ query_texts=[question],
153
+ n_results=5,
154
+ )
155
+ context = "\n\n\n".join(relevant_chunks["documents"][0])
156
+ # Please note that this is a generic format. You can change this format to be specific to llama
157
+ prompt = (f"{context}\n\nPlease answer the following question in one sentence using this "
158
+ + f"text. "
159
+ + f"If the question is unanswerable, say \"unanswerable\". Do not include information that's not relevant to the question."
160
+ + f"Question: {question}")
161
+
162
+ return prompt
163
+
164
+
165
+ def main():
166
+
167
+ # Get the API key and project id and update global variables
168
+ get_credentials()
169
+
170
+ # Try diffrent URLs and questions
171
+ url = "https://www.usbank.com/financialiq/manage-your-household/buy-a-car/own-electric-vehicles-learned-buying-driving-EVs.html"
172
+
173
+ question = "What are the incentives for purchasing EVs?"
174
+ # question = "What is the percentage of driving powered by hybrid cars?"
175
+ # question = "Can an EV be plugged in to a household outlet?"
176
+ collection_name = "test_web_RAG"
177
+
178
+ answer_questions_from_web(api_key, watsonx_project_id, url, question, collection_name)
179
+
180
+
181
+ def answer_questions_from_web(request_api_key, request_project_id, url, question, collection_name):
182
+ # Update the global variable
183
+ globals()["api_key"] = request_api_key
184
+ globals()["watsonx_project_id"] = request_project_id
185
+
186
+ # Specify model parameters
187
+ model_type = "meta-llama/llama-2-70b-chat"
188
+ max_tokens = 100
189
+ min_tokens = 50
190
+ top_k = 50
191
+ top_p = 1
192
+ decoding = DecodingMethods.GREEDY
193
+ temperature = 0.7
194
+
195
+ # Get the watsonx model = try both options
196
+ model = get_model(model_type, max_tokens, min_tokens, decoding, temperature, top_k, top_p)
197
+
198
+ # Get the prompt
199
+ complete_prompt = create_prompt(url, question, collection_name)
200
+
201
+ # Let's review the prompt
202
+ print("----------------------------------------------------------------------------------------------------")
203
+ print("*** Prompt:" + complete_prompt + "***")
204
+ print("----------------------------------------------------------------------------------------------------")
205
+
206
+ generated_response = model.generate(prompt=complete_prompt)
207
+ response_text = generated_response['results'][0]['generated_text']
208
+
209
+ # Remove trailing white spaces
210
+ response_text = response_text.strip()
211
+
212
+ # print model response
213
+ print("--------------------------------- Generated response -----------------------------------")
214
+ print(response_text)
215
+ print("*********************************************************************************************")
216
+
217
+ return response_text
218
+
219
+ # Invoke the main function
220
+ if __name__ == "__main__":
221
+ main()