Spaces:
Running
Running
from typing import List | |
import torch | |
from toolkit.optimizers.optimizer_utils import Auto8bitTensor, copy_stochastic, stochastic_grad_accummulation | |
from optimum.quanto import QBytesTensor | |
import random | |
class Automagic(torch.optim.Optimizer): | |
def __init__( | |
self, | |
params, | |
lr=1e-6, # lr is start lr | |
min_lr=1e-7, | |
max_lr=1e-3, | |
lr_bump=1e-6, # amount to bump the lr when adjusting | |
eps=(1e-30, 1e-3), | |
clip_threshold=1.0, | |
beta2=0.999, | |
weight_decay=0.0, | |
do_paramiter_swapping=False, | |
paramiter_swapping_factor=0.1, | |
): | |
self.lr = lr | |
if self.lr > 1e-3: | |
print(f"Warning! Start lr is very high: {self.lr}. Forcing to 1e-6. this does not work like prodigy") | |
self.lr = 1e-6 | |
self.min_lr = min_lr | |
self.max_lr = max_lr | |
self.lr_bump = lr_bump | |
defaults = { | |
"lr": lr, | |
"eps": eps, | |
"clip_threshold": clip_threshold, | |
"beta2": beta2, | |
"weight_decay": weight_decay, | |
} | |
super().__init__(params, defaults) | |
self.base_lrs: List[float] = [ | |
lr for group in self.param_groups | |
] | |
self.is_stochastic_rounding_accumulation = False | |
# setup stochastic grad accum hooks | |
for group in self.param_groups: | |
for param in group['params']: | |
if param.requires_grad and param.dtype != torch.float32: | |
self.is_stochastic_rounding_accumulation = True | |
param.register_post_accumulate_grad_hook( | |
stochastic_grad_accummulation | |
) | |
self.do_paramiter_swapping = do_paramiter_swapping | |
self.paramiter_swapping_factor = paramiter_swapping_factor | |
self._total_paramiter_size = 0 | |
# count total paramiters | |
for group in self.param_groups: | |
for param in group['params']: | |
self._total_paramiter_size += torch.numel(param) | |
# pretty print total paramiters with comma seperation | |
print(f"Total training paramiters: {self._total_paramiter_size:,}") | |
# needs to be enabled to count paramiters | |
if self.do_paramiter_swapping: | |
self.enable_paramiter_swapping(self.paramiter_swapping_factor) | |
def enable_paramiter_swapping(self, paramiter_swapping_factor=0.1): | |
self.do_paramiter_swapping = True | |
self.paramiter_swapping_factor = paramiter_swapping_factor | |
# call it an initial time | |
self.swap_paramiters() | |
def swap_paramiters(self): | |
all_params = [] | |
# deactivate all paramiters | |
for group in self.param_groups: | |
for param in group['params']: | |
param.requires_grad_(False) | |
# remove any grad | |
param.grad = None | |
all_params.append(param) | |
# shuffle all paramiters | |
random.shuffle(all_params) | |
# keep activating paramiters until we are going to go over the target paramiters | |
target_paramiters = int( | |
self._total_paramiter_size * self.paramiter_swapping_factor) | |
total_paramiters = 0 | |
for param in all_params: | |
total_paramiters += torch.numel(param) | |
if total_paramiters >= target_paramiters: | |
break | |
else: | |
param.requires_grad_(True) | |
def _get_lr(param_group, param_state): | |
if 'avg_lr' in param_state: | |
lr = param_state["avg_lr"] | |
else: | |
lr = 0.0 | |
return lr | |
def _get_group_lr(self, group): | |
group_lrs = [] | |
for p in group["params"]: | |
group_lrs.append(self._get_lr(group, self.state[p])) | |
# return avg | |
if len(group_lrs) == 0: | |
return self.lr | |
return sum(group_lrs) / len(group_lrs) | |
def _rms(tensor): | |
return tensor.norm(2) / (tensor.numel() ** 0.5) | |
def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col): | |
r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=- | |
1, keepdim=True)).rsqrt_().unsqueeze(-1) | |
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt() | |
return torch.mul(r_factor, c_factor) | |
def step_hook(self): | |
if not self.is_stochastic_rounding_accumulation: | |
return | |
# copy over stochastically rounded grads | |
for group in self.param_groups: | |
for param in group['params']: | |
if param.requires_grad and hasattr(param, "_accum_grad"): | |
param.grad = param._accum_grad | |
del param._accum_grad | |
# automagic manages its own lr | |
def get_learning_rates(self): | |
lrs = [ | |
self._get_group_lr(group) | |
for group in self.param_groups | |
] | |
if len(lrs) == 0: | |
lrs = self.base_lrs # if called before stepping | |
return lrs | |
def get_avg_learning_rate(self): | |
lrs = self.get_learning_rates() | |
return sum(lrs) / len(lrs) | |
def step(self, closure=None): | |
""" | |
Performs a single optimization step | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
self.step_hook() | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p in group["params"]: | |
if p.grad is None or not p.requires_grad: | |
continue | |
grad = p.grad | |
if grad.dtype != torch.float32: | |
grad = grad.to(torch.float32) | |
if grad.is_sparse: | |
raise RuntimeError( | |
"Automagic does not support sparse gradients.") | |
state = self.state[p] | |
grad_shape = grad.shape | |
factored = len(grad_shape) >= 2 | |
# State Initialization | |
if len(state) == 0: | |
self.initialize_state(p) | |
else: | |
# Check if exp_avg_sq_row and exp_avg_sq_col exist for factored case | |
if factored: | |
if "exp_avg_sq_row" not in state or "exp_avg_sq_col" not in state: | |
state["exp_avg_sq_row"] = torch.zeros(p.shape[:-1]).to(grad) | |
state["exp_avg_sq_col"] = torch.zeros(p.shape[:-2] + p.shape[-1:]).to(grad) | |
else: | |
state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad) | |
state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad) | |
# Check if exp_avg_sq exists for non-factored case | |
else: | |
if "exp_avg_sq" not in state: | |
state["exp_avg_sq"] = torch.zeros_like(grad) | |
else: | |
state["exp_avg_sq"] = state["exp_avg_sq"].to(grad) | |
p_data_fp32 = p | |
if isinstance(p_data_fp32, QBytesTensor): | |
p_data_fp32 = p_data_fp32.dequantize() | |
if p.dtype != torch.float32: | |
p_data_fp32 = p_data_fp32.clone().float() | |
# Initialize step if it doesn't exist | |
if "step" not in state: | |
state["step"] = 0 | |
state["step"] += 1 | |
state["RMS"] = self._rms(p_data_fp32) | |
# Use fixed beta2 from group instead of decay_rate calculation | |
beta2 = group["beta2"] | |
eps = group["eps"] | |
if isinstance(eps, tuple) or isinstance(eps, list): | |
eps = eps[0] | |
update = (grad**2) + eps | |
if factored: | |
exp_avg_sq_row = state["exp_avg_sq_row"] | |
exp_avg_sq_col = state["exp_avg_sq_col"] | |
exp_avg_sq_row.mul_(beta2).add_( | |
update.mean(dim=-1), alpha=(1.0 - beta2)) | |
exp_avg_sq_col.mul_(beta2).add_( | |
update.mean(dim=-2), alpha=(1.0 - beta2)) | |
# Approximation of exponential moving average of square of gradient | |
update = self._approx_sq_grad( | |
exp_avg_sq_row, exp_avg_sq_col) | |
update.mul_(grad) | |
else: | |
exp_avg_sq = state["exp_avg_sq"] | |
exp_avg_sq.mul_(beta2).add_(update, alpha=(1.0 - beta2)) | |
update = exp_avg_sq.rsqrt().mul_(grad) | |
update.div_( | |
(self._rms(update) / group["clip_threshold"]).clamp_(min=1.0)) | |
# Ensure state is properly initialized | |
if 'last_polarity' not in state or 'lr_mask' not in state: | |
self.initialize_state(p) | |
# Get signs of current last update and updates | |
last_polarity = state['last_polarity'] | |
current_polarity = (update > 0).to(torch.bool) | |
sign_agreement = torch.where( | |
last_polarity == current_polarity, 1, -1) | |
state['last_polarity'] = current_polarity | |
lr_mask = state['lr_mask'].to(torch.float32) | |
# Update learning rate mask based on sign agreement | |
new_lr = torch.where( | |
sign_agreement > 0, | |
lr_mask + self.lr_bump, # Increase lr | |
lr_mask - self.lr_bump # Decrease lr | |
) | |
# Clip learning rates to bounds | |
new_lr = torch.clamp( | |
new_lr, | |
min=self.min_lr, | |
max=self.max_lr | |
) | |
# Apply the learning rate mask to the update | |
update.mul_(new_lr) | |
state['lr_mask'] = Auto8bitTensor(new_lr) | |
state['avg_lr'] = torch.mean(new_lr) | |
if group["weight_decay"] != 0: | |
# Apply weight decay with per-parameter learning rates | |
# Instead of using add_ with a tensor alpha (which isn't supported), | |
# we'll use element-wise multiplication to apply the weight decay | |
weight_decay_update = p_data_fp32 * (-group["weight_decay"]) * new_lr | |
p_data_fp32.add_(weight_decay_update) | |
p_data_fp32.add_(-update) | |
if p.dtype != torch.float32: | |
# apply stochastic rounding | |
copy_stochastic(p, p_data_fp32) | |
return loss | |
def initialize_state(self, p): | |
state = self.state[p] | |
state["step"] = 0 | |
# store the lr mask | |
if 'lr_mask' not in state: | |
state['lr_mask'] = Auto8bitTensor(torch.ones( | |
p.shape).to(p.device, dtype=torch.float32) * self.lr | |
) | |
state['avg_lr'] = torch.mean( | |
state['lr_mask'].to(torch.float32)) | |
if 'last_polarity' not in state: | |
state['last_polarity'] = torch.zeros( | |
p.shape, dtype=torch.bool, device=p.device) | |
factored = len(p.shape) >= 2 | |
if factored: | |
state["exp_avg_sq_row"] = torch.zeros( | |
p.shape[:-1]).to(p) | |
state["exp_avg_sq_col"] = torch.zeros( | |
p.shape[:-2] + p.shape[-1:]).to(p) | |
else: | |
state["exp_avg_sq"] = torch.zeros_like(p) | |
state["RMS"] = 0 | |
# override the state_dict to save the lr_mask | |
def state_dict(self, *args, **kwargs): | |
orig_state_dict = super().state_dict(*args, **kwargs) | |
# convert the state to quantized tensor to scale and quantized | |
new_sace_state = {} | |
for p, state in orig_state_dict['state'].items(): | |
save_state = {k: v for k, v in state.items() if k != 'lr_mask'} | |
# Check if lr_mask exists in the state before trying to access it | |
if 'lr_mask' in state: | |
save_state['lr_mask'] = state['lr_mask'].state_dict() | |
new_sace_state[p] = save_state | |
orig_state_dict['state'] = new_sace_state | |
return orig_state_dict | |
def load_state_dict(self, state_dict, strict=True): | |
# Validate that the state_dict is from an Automagic optimizer | |
is_valid_automagic_state = False | |
# Check if state_dict has the expected structure | |
if 'state' in state_dict and isinstance(state_dict['state'], dict): | |
# Check if at least one state entry has an lr_mask, which is specific to Automagic | |
for param_id, param_state in state_dict['state'].items(): | |
if isinstance(param_state, dict) and 'lr_mask' in param_state: | |
is_valid_automagic_state = True | |
break | |
if not is_valid_automagic_state: | |
return | |
# First, call the parent class's load_state_dict to load the basic optimizer state | |
# We'll handle the lr_mask separately | |
state_dict_copy = { | |
'state': {}, | |
'param_groups': state_dict['param_groups'] | |
} | |
# Copy all state entries except lr_mask | |
for param_id, param_state in state_dict['state'].items(): | |
state_dict_copy['state'][param_id] = { | |
k: v for k, v in param_state.items() if k != 'lr_mask' | |
} | |
# Call parent class load_state_dict with the modified state dict | |
super().load_state_dict(state_dict_copy) | |
# Now handle the lr_mask separately | |
# We need to map the saved parameters to the current parameters | |
# This is tricky because the parameter IDs might be different | |
# Get all current parameters that require gradients | |
current_params = [] | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.requires_grad: | |
current_params.append(p) | |
# If the number of parameters doesn't match, we can't reliably map them | |
if len(current_params) != len(state_dict['param_groups'][0]['params']): | |
print(f"WARNING: Number of parameters doesn't match between saved state ({len(state_dict['param_groups'][0]['params'])}) " | |
f"and current model ({len(current_params)}). Learning rate masks may not be correctly loaded.") | |
# Map parameters by their position in the param_groups | |
# This assumes the order of parameters is preserved between saving and loading | |
saved_param_ids = list(state_dict['state'].keys()) | |
for i, current_param in enumerate(current_params): | |
if i >= len(saved_param_ids): | |
break | |
saved_param_id = saved_param_ids[i] | |
saved_state = state_dict['state'][saved_param_id] | |
# Skip if this saved state doesn't have an lr_mask | |
if 'lr_mask' not in saved_state: | |
continue | |
# Initialize the state for this parameter if it doesn't exist | |
if current_param not in self.state: | |
self.initialize_state(current_param) | |
# Get the current state for this parameter | |
current_state = self.state[current_param] | |
# Load the lr_mask from the saved state | |
saved_lr_mask = saved_state['lr_mask'] | |
# Reconstruct the Auto8bitTensor from its state dict | |
try: | |
# Make sure the shapes match | |
if 'quantized' in saved_lr_mask and saved_lr_mask['quantized'].shape == current_param.shape: | |
current_state['lr_mask'] = Auto8bitTensor(saved_lr_mask) | |
else: | |
print(f"WARNING: Shape mismatch for parameter {i}. " | |
f"Expected {current_param.shape}, got {saved_lr_mask['quantized'].shape if 'quantized' in saved_lr_mask else 'unknown'}. " | |
f"Initializing new lr_mask.") | |
# Initialize a new lr_mask | |
current_state['lr_mask'] = Auto8bitTensor(torch.ones( | |
current_param.shape).to(current_param.device, dtype=torch.float32) * self.lr | |
) | |
except Exception as e: | |
print(f"ERROR: Failed to load lr_mask for parameter {i}: {e}") | |
# Initialize a new lr_mask | |
current_state['lr_mask'] = Auto8bitTensor(torch.ones( | |
current_param.shape).to(current_param.device, dtype=torch.float32) * self.lr | |
) | |