rahul7star's picture
boilerplate
fcc02a2 verified
from typing import List
import torch
from toolkit.optimizers.optimizer_utils import Auto8bitTensor, copy_stochastic, stochastic_grad_accummulation
from optimum.quanto import QBytesTensor
import random
class Automagic(torch.optim.Optimizer):
def __init__(
self,
params,
lr=1e-6, # lr is start lr
min_lr=1e-7,
max_lr=1e-3,
lr_bump=1e-6, # amount to bump the lr when adjusting
eps=(1e-30, 1e-3),
clip_threshold=1.0,
beta2=0.999,
weight_decay=0.0,
do_paramiter_swapping=False,
paramiter_swapping_factor=0.1,
):
self.lr = lr
if self.lr > 1e-3:
print(f"Warning! Start lr is very high: {self.lr}. Forcing to 1e-6. this does not work like prodigy")
self.lr = 1e-6
self.min_lr = min_lr
self.max_lr = max_lr
self.lr_bump = lr_bump
defaults = {
"lr": lr,
"eps": eps,
"clip_threshold": clip_threshold,
"beta2": beta2,
"weight_decay": weight_decay,
}
super().__init__(params, defaults)
self.base_lrs: List[float] = [
lr for group in self.param_groups
]
self.is_stochastic_rounding_accumulation = False
# setup stochastic grad accum hooks
for group in self.param_groups:
for param in group['params']:
if param.requires_grad and param.dtype != torch.float32:
self.is_stochastic_rounding_accumulation = True
param.register_post_accumulate_grad_hook(
stochastic_grad_accummulation
)
self.do_paramiter_swapping = do_paramiter_swapping
self.paramiter_swapping_factor = paramiter_swapping_factor
self._total_paramiter_size = 0
# count total paramiters
for group in self.param_groups:
for param in group['params']:
self._total_paramiter_size += torch.numel(param)
# pretty print total paramiters with comma seperation
print(f"Total training paramiters: {self._total_paramiter_size:,}")
# needs to be enabled to count paramiters
if self.do_paramiter_swapping:
self.enable_paramiter_swapping(self.paramiter_swapping_factor)
def enable_paramiter_swapping(self, paramiter_swapping_factor=0.1):
self.do_paramiter_swapping = True
self.paramiter_swapping_factor = paramiter_swapping_factor
# call it an initial time
self.swap_paramiters()
def swap_paramiters(self):
all_params = []
# deactivate all paramiters
for group in self.param_groups:
for param in group['params']:
param.requires_grad_(False)
# remove any grad
param.grad = None
all_params.append(param)
# shuffle all paramiters
random.shuffle(all_params)
# keep activating paramiters until we are going to go over the target paramiters
target_paramiters = int(
self._total_paramiter_size * self.paramiter_swapping_factor)
total_paramiters = 0
for param in all_params:
total_paramiters += torch.numel(param)
if total_paramiters >= target_paramiters:
break
else:
param.requires_grad_(True)
@staticmethod
def _get_lr(param_group, param_state):
if 'avg_lr' in param_state:
lr = param_state["avg_lr"]
else:
lr = 0.0
return lr
def _get_group_lr(self, group):
group_lrs = []
for p in group["params"]:
group_lrs.append(self._get_lr(group, self.state[p]))
# return avg
if len(group_lrs) == 0:
return self.lr
return sum(group_lrs) / len(group_lrs)
@staticmethod
def _rms(tensor):
return tensor.norm(2) / (tensor.numel() ** 0.5)
@staticmethod
def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col):
r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-
1, keepdim=True)).rsqrt_().unsqueeze(-1)
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
return torch.mul(r_factor, c_factor)
def step_hook(self):
if not self.is_stochastic_rounding_accumulation:
return
# copy over stochastically rounded grads
for group in self.param_groups:
for param in group['params']:
if param.requires_grad and hasattr(param, "_accum_grad"):
param.grad = param._accum_grad
del param._accum_grad
# automagic manages its own lr
def get_learning_rates(self):
lrs = [
self._get_group_lr(group)
for group in self.param_groups
]
if len(lrs) == 0:
lrs = self.base_lrs # if called before stepping
return lrs
def get_avg_learning_rate(self):
lrs = self.get_learning_rates()
return sum(lrs) / len(lrs)
@torch.no_grad()
def step(self, closure=None):
"""
Performs a single optimization step
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
self.step_hook()
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None or not p.requires_grad:
continue
grad = p.grad
if grad.dtype != torch.float32:
grad = grad.to(torch.float32)
if grad.is_sparse:
raise RuntimeError(
"Automagic does not support sparse gradients.")
state = self.state[p]
grad_shape = grad.shape
factored = len(grad_shape) >= 2
# State Initialization
if len(state) == 0:
self.initialize_state(p)
else:
# Check if exp_avg_sq_row and exp_avg_sq_col exist for factored case
if factored:
if "exp_avg_sq_row" not in state or "exp_avg_sq_col" not in state:
state["exp_avg_sq_row"] = torch.zeros(p.shape[:-1]).to(grad)
state["exp_avg_sq_col"] = torch.zeros(p.shape[:-2] + p.shape[-1:]).to(grad)
else:
state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad)
state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad)
# Check if exp_avg_sq exists for non-factored case
else:
if "exp_avg_sq" not in state:
state["exp_avg_sq"] = torch.zeros_like(grad)
else:
state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)
p_data_fp32 = p
if isinstance(p_data_fp32, QBytesTensor):
p_data_fp32 = p_data_fp32.dequantize()
if p.dtype != torch.float32:
p_data_fp32 = p_data_fp32.clone().float()
# Initialize step if it doesn't exist
if "step" not in state:
state["step"] = 0
state["step"] += 1
state["RMS"] = self._rms(p_data_fp32)
# Use fixed beta2 from group instead of decay_rate calculation
beta2 = group["beta2"]
eps = group["eps"]
if isinstance(eps, tuple) or isinstance(eps, list):
eps = eps[0]
update = (grad**2) + eps
if factored:
exp_avg_sq_row = state["exp_avg_sq_row"]
exp_avg_sq_col = state["exp_avg_sq_col"]
exp_avg_sq_row.mul_(beta2).add_(
update.mean(dim=-1), alpha=(1.0 - beta2))
exp_avg_sq_col.mul_(beta2).add_(
update.mean(dim=-2), alpha=(1.0 - beta2))
# Approximation of exponential moving average of square of gradient
update = self._approx_sq_grad(
exp_avg_sq_row, exp_avg_sq_col)
update.mul_(grad)
else:
exp_avg_sq = state["exp_avg_sq"]
exp_avg_sq.mul_(beta2).add_(update, alpha=(1.0 - beta2))
update = exp_avg_sq.rsqrt().mul_(grad)
update.div_(
(self._rms(update) / group["clip_threshold"]).clamp_(min=1.0))
# Ensure state is properly initialized
if 'last_polarity' not in state or 'lr_mask' not in state:
self.initialize_state(p)
# Get signs of current last update and updates
last_polarity = state['last_polarity']
current_polarity = (update > 0).to(torch.bool)
sign_agreement = torch.where(
last_polarity == current_polarity, 1, -1)
state['last_polarity'] = current_polarity
lr_mask = state['lr_mask'].to(torch.float32)
# Update learning rate mask based on sign agreement
new_lr = torch.where(
sign_agreement > 0,
lr_mask + self.lr_bump, # Increase lr
lr_mask - self.lr_bump # Decrease lr
)
# Clip learning rates to bounds
new_lr = torch.clamp(
new_lr,
min=self.min_lr,
max=self.max_lr
)
# Apply the learning rate mask to the update
update.mul_(new_lr)
state['lr_mask'] = Auto8bitTensor(new_lr)
state['avg_lr'] = torch.mean(new_lr)
if group["weight_decay"] != 0:
# Apply weight decay with per-parameter learning rates
# Instead of using add_ with a tensor alpha (which isn't supported),
# we'll use element-wise multiplication to apply the weight decay
weight_decay_update = p_data_fp32 * (-group["weight_decay"]) * new_lr
p_data_fp32.add_(weight_decay_update)
p_data_fp32.add_(-update)
if p.dtype != torch.float32:
# apply stochastic rounding
copy_stochastic(p, p_data_fp32)
return loss
def initialize_state(self, p):
state = self.state[p]
state["step"] = 0
# store the lr mask
if 'lr_mask' not in state:
state['lr_mask'] = Auto8bitTensor(torch.ones(
p.shape).to(p.device, dtype=torch.float32) * self.lr
)
state['avg_lr'] = torch.mean(
state['lr_mask'].to(torch.float32))
if 'last_polarity' not in state:
state['last_polarity'] = torch.zeros(
p.shape, dtype=torch.bool, device=p.device)
factored = len(p.shape) >= 2
if factored:
state["exp_avg_sq_row"] = torch.zeros(
p.shape[:-1]).to(p)
state["exp_avg_sq_col"] = torch.zeros(
p.shape[:-2] + p.shape[-1:]).to(p)
else:
state["exp_avg_sq"] = torch.zeros_like(p)
state["RMS"] = 0
# override the state_dict to save the lr_mask
def state_dict(self, *args, **kwargs):
orig_state_dict = super().state_dict(*args, **kwargs)
# convert the state to quantized tensor to scale and quantized
new_sace_state = {}
for p, state in orig_state_dict['state'].items():
save_state = {k: v for k, v in state.items() if k != 'lr_mask'}
# Check if lr_mask exists in the state before trying to access it
if 'lr_mask' in state:
save_state['lr_mask'] = state['lr_mask'].state_dict()
new_sace_state[p] = save_state
orig_state_dict['state'] = new_sace_state
return orig_state_dict
def load_state_dict(self, state_dict, strict=True):
# Validate that the state_dict is from an Automagic optimizer
is_valid_automagic_state = False
# Check if state_dict has the expected structure
if 'state' in state_dict and isinstance(state_dict['state'], dict):
# Check if at least one state entry has an lr_mask, which is specific to Automagic
for param_id, param_state in state_dict['state'].items():
if isinstance(param_state, dict) and 'lr_mask' in param_state:
is_valid_automagic_state = True
break
if not is_valid_automagic_state:
return
# First, call the parent class's load_state_dict to load the basic optimizer state
# We'll handle the lr_mask separately
state_dict_copy = {
'state': {},
'param_groups': state_dict['param_groups']
}
# Copy all state entries except lr_mask
for param_id, param_state in state_dict['state'].items():
state_dict_copy['state'][param_id] = {
k: v for k, v in param_state.items() if k != 'lr_mask'
}
# Call parent class load_state_dict with the modified state dict
super().load_state_dict(state_dict_copy)
# Now handle the lr_mask separately
# We need to map the saved parameters to the current parameters
# This is tricky because the parameter IDs might be different
# Get all current parameters that require gradients
current_params = []
for group in self.param_groups:
for p in group['params']:
if p.requires_grad:
current_params.append(p)
# If the number of parameters doesn't match, we can't reliably map them
if len(current_params) != len(state_dict['param_groups'][0]['params']):
print(f"WARNING: Number of parameters doesn't match between saved state ({len(state_dict['param_groups'][0]['params'])}) "
f"and current model ({len(current_params)}). Learning rate masks may not be correctly loaded.")
# Map parameters by their position in the param_groups
# This assumes the order of parameters is preserved between saving and loading
saved_param_ids = list(state_dict['state'].keys())
for i, current_param in enumerate(current_params):
if i >= len(saved_param_ids):
break
saved_param_id = saved_param_ids[i]
saved_state = state_dict['state'][saved_param_id]
# Skip if this saved state doesn't have an lr_mask
if 'lr_mask' not in saved_state:
continue
# Initialize the state for this parameter if it doesn't exist
if current_param not in self.state:
self.initialize_state(current_param)
# Get the current state for this parameter
current_state = self.state[current_param]
# Load the lr_mask from the saved state
saved_lr_mask = saved_state['lr_mask']
# Reconstruct the Auto8bitTensor from its state dict
try:
# Make sure the shapes match
if 'quantized' in saved_lr_mask and saved_lr_mask['quantized'].shape == current_param.shape:
current_state['lr_mask'] = Auto8bitTensor(saved_lr_mask)
else:
print(f"WARNING: Shape mismatch for parameter {i}. "
f"Expected {current_param.shape}, got {saved_lr_mask['quantized'].shape if 'quantized' in saved_lr_mask else 'unknown'}. "
f"Initializing new lr_mask.")
# Initialize a new lr_mask
current_state['lr_mask'] = Auto8bitTensor(torch.ones(
current_param.shape).to(current_param.device, dtype=torch.float32) * self.lr
)
except Exception as e:
print(f"ERROR: Failed to load lr_mask for parameter {i}: {e}")
# Initialize a new lr_mask
current_state['lr_mask'] = Auto8bitTensor(torch.ones(
current_param.shape).to(current_param.device, dtype=torch.float32) * self.lr
)