File size: 16,932 Bytes
fcc02a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
from typing import List
import torch
from toolkit.optimizers.optimizer_utils import Auto8bitTensor, copy_stochastic, stochastic_grad_accummulation
from optimum.quanto import QBytesTensor
import random


class Automagic(torch.optim.Optimizer):
    def __init__(
        self,
        params,
        lr=1e-6, # lr is start lr
        min_lr=1e-7,
        max_lr=1e-3,
        lr_bump=1e-6, # amount to bump the lr when adjusting
        eps=(1e-30, 1e-3),
        clip_threshold=1.0,
        beta2=0.999,
        weight_decay=0.0,
        do_paramiter_swapping=False,
        paramiter_swapping_factor=0.1,
    ):
        self.lr = lr
        if self.lr > 1e-3:
            print(f"Warning! Start lr is very high: {self.lr}. Forcing to 1e-6. this does not work like prodigy")
            self.lr = 1e-6
        self.min_lr = min_lr
        self.max_lr = max_lr
        self.lr_bump = lr_bump

        defaults = {
            "lr": lr,
            "eps": eps,
            "clip_threshold": clip_threshold,
            "beta2": beta2,
            "weight_decay": weight_decay,
        }
        super().__init__(params, defaults)

        self.base_lrs: List[float] = [
            lr for group in self.param_groups
        ]

        self.is_stochastic_rounding_accumulation = False

        # setup stochastic grad accum hooks
        for group in self.param_groups:
            for param in group['params']:
                if param.requires_grad and param.dtype != torch.float32:
                    self.is_stochastic_rounding_accumulation = True
                    param.register_post_accumulate_grad_hook(
                        stochastic_grad_accummulation
                    )

        self.do_paramiter_swapping = do_paramiter_swapping
        self.paramiter_swapping_factor = paramiter_swapping_factor
        self._total_paramiter_size = 0
        # count total paramiters
        for group in self.param_groups:
            for param in group['params']:
                self._total_paramiter_size += torch.numel(param)
        # pretty print total paramiters with comma seperation
        print(f"Total training paramiters: {self._total_paramiter_size:,}")

        # needs to be enabled to count paramiters
        if self.do_paramiter_swapping:
            self.enable_paramiter_swapping(self.paramiter_swapping_factor)

    def enable_paramiter_swapping(self, paramiter_swapping_factor=0.1):
        self.do_paramiter_swapping = True
        self.paramiter_swapping_factor = paramiter_swapping_factor
        # call it an initial time
        self.swap_paramiters()

    def swap_paramiters(self):
        all_params = []
        # deactivate all paramiters
        for group in self.param_groups:
            for param in group['params']:
                param.requires_grad_(False)
                # remove any grad
                param.grad = None
                all_params.append(param)
        # shuffle all paramiters
        random.shuffle(all_params)

        # keep activating paramiters until we are going to go over the target paramiters
        target_paramiters = int(
            self._total_paramiter_size * self.paramiter_swapping_factor)
        total_paramiters = 0
        for param in all_params:
            total_paramiters += torch.numel(param)
            if total_paramiters >= target_paramiters:
                break
            else:
                param.requires_grad_(True)

    @staticmethod
    def _get_lr(param_group, param_state):
        if 'avg_lr' in param_state:
            lr = param_state["avg_lr"]
        else:
            lr = 0.0
        return lr

    def _get_group_lr(self, group):
        group_lrs = []
        for p in group["params"]:
            group_lrs.append(self._get_lr(group, self.state[p]))
        # return avg
        if len(group_lrs) == 0:
            return self.lr
        return sum(group_lrs) / len(group_lrs)

    @staticmethod
    def _rms(tensor):
        return tensor.norm(2) / (tensor.numel() ** 0.5)

    @staticmethod
    def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col):
        r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-
                    1, keepdim=True)).rsqrt_().unsqueeze(-1)
        c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
        return torch.mul(r_factor, c_factor)

    def step_hook(self):
        if not self.is_stochastic_rounding_accumulation:
            return
        # copy over stochastically rounded grads
        for group in self.param_groups:
            for param in group['params']:
                if param.requires_grad and hasattr(param, "_accum_grad"):
                    param.grad = param._accum_grad
                    del param._accum_grad

    # automagic manages its own lr
    def get_learning_rates(self):

        lrs = [
            self._get_group_lr(group)
            for group in self.param_groups
        ]
        if len(lrs) == 0:
            lrs = self.base_lrs  # if called before stepping
        return lrs

    def get_avg_learning_rate(self):
        lrs = self.get_learning_rates()
        return sum(lrs) / len(lrs)

    @torch.no_grad()
    def step(self, closure=None):
        """
        Performs a single optimization step

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        self.step_hook()
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group["params"]:
                if p.grad is None or not p.requires_grad:
                    continue

                grad = p.grad
                if grad.dtype != torch.float32:
                    grad = grad.to(torch.float32)
                if grad.is_sparse:
                    raise RuntimeError(
                        "Automagic does not support sparse gradients.")

                state = self.state[p]
                grad_shape = grad.shape

                factored = len(grad_shape) >= 2
                # State Initialization
                if len(state) == 0:
                    self.initialize_state(p)
                else:
                    # Check if exp_avg_sq_row and exp_avg_sq_col exist for factored case
                    if factored:
                        if "exp_avg_sq_row" not in state or "exp_avg_sq_col" not in state:
                            state["exp_avg_sq_row"] = torch.zeros(p.shape[:-1]).to(grad)
                            state["exp_avg_sq_col"] = torch.zeros(p.shape[:-2] + p.shape[-1:]).to(grad)
                        else:
                            state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad)
                            state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad)
                    # Check if exp_avg_sq exists for non-factored case
                    else:
                        if "exp_avg_sq" not in state:
                            state["exp_avg_sq"] = torch.zeros_like(grad)
                        else:
                            state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)

                p_data_fp32 = p

                if isinstance(p_data_fp32, QBytesTensor):
                    p_data_fp32 = p_data_fp32.dequantize()
                if p.dtype != torch.float32:
                    p_data_fp32 = p_data_fp32.clone().float()

                # Initialize step if it doesn't exist
                if "step" not in state:
                    state["step"] = 0
                state["step"] += 1
                state["RMS"] = self._rms(p_data_fp32)

                # Use fixed beta2 from group instead of decay_rate calculation
                beta2 = group["beta2"]
                eps = group["eps"]
                if isinstance(eps, tuple) or isinstance(eps, list):
                    eps = eps[0]
                update = (grad**2) + eps
                if factored:
                    exp_avg_sq_row = state["exp_avg_sq_row"]
                    exp_avg_sq_col = state["exp_avg_sq_col"]

                    exp_avg_sq_row.mul_(beta2).add_(
                        update.mean(dim=-1), alpha=(1.0 - beta2))
                    exp_avg_sq_col.mul_(beta2).add_(
                        update.mean(dim=-2), alpha=(1.0 - beta2))

                    # Approximation of exponential moving average of square of gradient
                    update = self._approx_sq_grad(
                        exp_avg_sq_row, exp_avg_sq_col)
                    update.mul_(grad)
                else:
                    exp_avg_sq = state["exp_avg_sq"]

                    exp_avg_sq.mul_(beta2).add_(update, alpha=(1.0 - beta2))
                    update = exp_avg_sq.rsqrt().mul_(grad)

                update.div_(
                    (self._rms(update) / group["clip_threshold"]).clamp_(min=1.0))

                # Ensure state is properly initialized
                if 'last_polarity' not in state or 'lr_mask' not in state:
                    self.initialize_state(p)
                
                # Get signs of current last update and updates
                last_polarity = state['last_polarity']
                current_polarity = (update > 0).to(torch.bool)
                sign_agreement = torch.where(
                    last_polarity == current_polarity, 1, -1)
                state['last_polarity'] = current_polarity

                lr_mask = state['lr_mask'].to(torch.float32)

                # Update learning rate mask based on sign agreement
                new_lr = torch.where(
                    sign_agreement > 0,
                    lr_mask + self.lr_bump,  # Increase lr
                    lr_mask - self.lr_bump  # Decrease lr
                )

                # Clip learning rates to bounds
                new_lr = torch.clamp(
                    new_lr,
                    min=self.min_lr,
                    max=self.max_lr
                )

                # Apply the learning rate mask to the update
                update.mul_(new_lr)

                state['lr_mask'] = Auto8bitTensor(new_lr)
                state['avg_lr'] = torch.mean(new_lr)

                if group["weight_decay"] != 0:
                    # Apply weight decay with per-parameter learning rates
                    # Instead of using add_ with a tensor alpha (which isn't supported),
                    # we'll use element-wise multiplication to apply the weight decay
                    weight_decay_update = p_data_fp32 * (-group["weight_decay"]) * new_lr
                    p_data_fp32.add_(weight_decay_update)

                p_data_fp32.add_(-update)

                if p.dtype != torch.float32:
                    # apply stochastic rounding
                    copy_stochastic(p, p_data_fp32)

        return loss
    
    def initialize_state(self, p):
        state = self.state[p]
        state["step"] = 0

        # store the lr mask
        if 'lr_mask' not in state:
            state['lr_mask'] = Auto8bitTensor(torch.ones(
                p.shape).to(p.device, dtype=torch.float32) * self.lr
            )
        state['avg_lr'] = torch.mean(
            state['lr_mask'].to(torch.float32))
        if 'last_polarity' not in state:
            state['last_polarity'] = torch.zeros(
                p.shape, dtype=torch.bool, device=p.device)
        
        factored = len(p.shape) >= 2
        if factored:
            state["exp_avg_sq_row"] = torch.zeros(
                p.shape[:-1]).to(p)
            state["exp_avg_sq_col"] = torch.zeros(
                p.shape[:-2] + p.shape[-1:]).to(p)
        else:
            state["exp_avg_sq"] = torch.zeros_like(p)

        state["RMS"] = 0
    
    # override the state_dict to save the lr_mask
    def state_dict(self, *args, **kwargs):
        orig_state_dict = super().state_dict(*args, **kwargs)
        # convert the state to quantized tensor to scale and quantized
        new_sace_state = {}
        for p, state in orig_state_dict['state'].items():
            save_state = {k: v for k, v in state.items() if k != 'lr_mask'}
            
            # Check if lr_mask exists in the state before trying to access it
            if 'lr_mask' in state:
                save_state['lr_mask'] = state['lr_mask'].state_dict()
            
            new_sace_state[p] = save_state
            
        orig_state_dict['state'] = new_sace_state
        
        return orig_state_dict
    
    def load_state_dict(self, state_dict, strict=True):
        # Validate that the state_dict is from an Automagic optimizer
        is_valid_automagic_state = False
        
        # Check if state_dict has the expected structure
        if 'state' in state_dict and isinstance(state_dict['state'], dict):
            # Check if at least one state entry has an lr_mask, which is specific to Automagic
            for param_id, param_state in state_dict['state'].items():
                if isinstance(param_state, dict) and 'lr_mask' in param_state:
                    is_valid_automagic_state = True
                    break
        
        if not is_valid_automagic_state:
            return
        
        # First, call the parent class's load_state_dict to load the basic optimizer state
        # We'll handle the lr_mask separately
        state_dict_copy = {
            'state': {},
            'param_groups': state_dict['param_groups']
        }
        
        # Copy all state entries except lr_mask
        for param_id, param_state in state_dict['state'].items():
            state_dict_copy['state'][param_id] = {
                k: v for k, v in param_state.items() if k != 'lr_mask'
            }
        
        # Call parent class load_state_dict with the modified state dict
        super().load_state_dict(state_dict_copy)
        
        # Now handle the lr_mask separately
        # We need to map the saved parameters to the current parameters
        # This is tricky because the parameter IDs might be different
        
        # Get all current parameters that require gradients
        current_params = []
        for group in self.param_groups:
            for p in group['params']:
                if p.requires_grad:
                    current_params.append(p)
        
        # If the number of parameters doesn't match, we can't reliably map them
        if len(current_params) != len(state_dict['param_groups'][0]['params']):
            print(f"WARNING: Number of parameters doesn't match between saved state ({len(state_dict['param_groups'][0]['params'])}) "
                  f"and current model ({len(current_params)}). Learning rate masks may not be correctly loaded.")
        
        # Map parameters by their position in the param_groups
        # This assumes the order of parameters is preserved between saving and loading
        saved_param_ids = list(state_dict['state'].keys())
        
        for i, current_param in enumerate(current_params):
            if i >= len(saved_param_ids):
                break
                
            saved_param_id = saved_param_ids[i]
            saved_state = state_dict['state'][saved_param_id]
            
            # Skip if this saved state doesn't have an lr_mask
            if 'lr_mask' not in saved_state:
                continue
                
            # Initialize the state for this parameter if it doesn't exist
            if current_param not in self.state:
                self.initialize_state(current_param)
                
            # Get the current state for this parameter
            current_state = self.state[current_param]
            
            # Load the lr_mask from the saved state
            saved_lr_mask = saved_state['lr_mask']
            
            # Reconstruct the Auto8bitTensor from its state dict
            try:
                # Make sure the shapes match
                if 'quantized' in saved_lr_mask and saved_lr_mask['quantized'].shape == current_param.shape:
                    current_state['lr_mask'] = Auto8bitTensor(saved_lr_mask)
                else:
                    print(f"WARNING: Shape mismatch for parameter {i}. "
                          f"Expected {current_param.shape}, got {saved_lr_mask['quantized'].shape if 'quantized' in saved_lr_mask else 'unknown'}. "
                          f"Initializing new lr_mask.")
                    # Initialize a new lr_mask
                    current_state['lr_mask'] = Auto8bitTensor(torch.ones(
                        current_param.shape).to(current_param.device, dtype=torch.float32) * self.lr
                    )
            except Exception as e:
                print(f"ERROR: Failed to load lr_mask for parameter {i}: {e}")
                # Initialize a new lr_mask
                current_state['lr_mask'] = Auto8bitTensor(torch.ones(
                    current_param.shape).to(current_param.device, dtype=torch.float32) * self.lr
                )