Spaces:
Running
Running
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
from typing import Optional | |
import torch | |
try: | |
import flash_attn_interface | |
FLASH_ATTN_3_AVAILABLE = True | |
except ModuleNotFoundError: | |
FLASH_ATTN_3_AVAILABLE = False | |
try: | |
import flash_attn | |
FLASH_ATTN_2_AVAILABLE = True | |
except ModuleNotFoundError: | |
FLASH_ATTN_2_AVAILABLE = False | |
try: | |
import sageattention | |
SAGE_ATTN_AVAILABLE = True | |
except ModuleNotFoundError: | |
SAGE_ATTN_AVAILABLE = False | |
try: | |
import xformers.ops as xops | |
XFORMERS_AVAILABLE = True | |
except ImportError: | |
XFORMERS_AVAILABLE = False | |
import warnings | |
__all__ = [ | |
"flash_attention", | |
"attention", | |
] | |
def flash_attention( | |
qkv, | |
q_lens=None, | |
k_lens=None, | |
dropout_p=0.0, | |
softmax_scale=None, | |
q_scale=None, | |
causal=False, | |
window_size=(-1, -1), | |
deterministic=False, | |
dtype=torch.bfloat16, | |
version=None, | |
attn_mode: Optional[str] = "torch", | |
split_attn: bool = False, | |
): | |
""" | |
q: [B, Lq, Nq, C1]. | |
k: [B, Lk, Nk, C1]. | |
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk. | |
q_lens: [B]. | |
k_lens: [B]. | |
dropout_p: float. Dropout probability. | |
softmax_scale: float. The scaling of QK^T before applying softmax. | |
causal: bool. Whether to apply causal attention mask. | |
window_size: (left right). If not (-1, -1), apply sliding window local attention. | |
deterministic: bool. If True, slightly slower and uses more memory. | |
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16. | |
""" | |
q, k, v = qkv | |
qkv.clear() | |
half_dtypes = (torch.float16, torch.bfloat16) | |
assert dtype in half_dtypes | |
# assert q.device.type == "cuda" and q.size(-1) <= 256 | |
# params | |
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype | |
def half(x): | |
return x if x.dtype in half_dtypes else x.to(dtype) | |
# We cannot test Flash attention 3 in musubi tuner, so keep the original code. | |
# Customized code (except for flash attention 3) is not supported q_lens and k_lens. | |
if attn_mode != "flash3" and attn_mode != "sageattn": | |
assert q_lens is None, "q_lens is not supported except for flash attention 3." | |
assert k_lens is None or ( | |
min(k_lens) == max(k_lens) and k_lens[0] == lk | |
), "k_lens is not supported except for flash attention 3." | |
# SDPA | |
if attn_mode == "torch" or attn_mode == "sdpa": | |
assert not deterministic, "deterministic is not supported in scaled_dot_product_attention." | |
if q_scale is not None: | |
q = q * q_scale | |
q = half(q.transpose(1, 2)) | |
k = half(k.transpose(1, 2)) | |
v = half(v.transpose(1, 2)) | |
if not split_attn: | |
q = torch.nn.functional.scaled_dot_product_attention( | |
q, k, v, is_causal=causal, dropout_p=dropout_p, scale=softmax_scale | |
) | |
x = q | |
else: | |
x = torch.empty_like(q) | |
for i in range(q.size(0)): | |
x[i : i + 1] = torch.nn.functional.scaled_dot_product_attention( | |
q[i : i + 1], k[i : i + 1], v[i : i + 1], is_causal=causal, dropout_p=dropout_p, scale=softmax_scale | |
) | |
del q, k, v | |
x = x.transpose(1, 2).contiguous() | |
return x.type(out_dtype) | |
# flash attention 2 | |
if attn_mode == "flash" or attn_mode == "flash2": | |
if q_scale is not None: | |
q = q * q_scale | |
q = half(q) | |
k = half(k) | |
v = half(v) | |
if not split_attn: | |
q = flash_attn.flash_attn_func(q, k, v, dropout_p, softmax_scale, causal, window_size, deterministic=deterministic) | |
x = q | |
else: | |
x = torch.empty_like(q) | |
for i in range(q.size(0)): | |
x[i : i + 1] = flash_attn.flash_attn_func( | |
q[i : i + 1], | |
k[i : i + 1], | |
v[i : i + 1], | |
dropout_p, | |
softmax_scale, | |
causal, | |
window_size, | |
deterministic=deterministic, | |
) | |
del q, k, v | |
return x.type(out_dtype) | |
# xformers | |
if attn_mode == "xformers": | |
assert not deterministic, "deterministic is not supported in xformers." | |
assert not causal, "causal is not supported in xformers." | |
if q_scale is not None: | |
q = q * q_scale | |
q = half(q) | |
k = half(k) | |
v = half(v) | |
if not split_attn: | |
q = xops.memory_efficient_attention(q, k, v, p=dropout_p, scale=softmax_scale) | |
x = q | |
else: | |
x = torch.empty_like(q) | |
for i in range(q.size(0)): | |
x[i : i + 1] = xops.memory_efficient_attention( | |
q[i : i + 1], k[i : i + 1], v[i : i + 1], p=dropout_p, scale=softmax_scale | |
) | |
del q, k, v | |
return x.type(out_dtype) | |
# sage attention with fixed length seems to cause NaN in I2V inference. | |
# # sage attention | |
# if attn_mode == "sageattn": | |
# print("Using sage attention") | |
# assert not deterministic, "deterministic is not supported in sage attention." | |
# if q_scale is not None: | |
# q = q * q_scale | |
# q, k, v = half(q), half(k), half(v) | |
# x = sageattention.sageattn(q, k, v, "NHD", is_causal=causal, sm_scale=softmax_scale) | |
# del q, k, v | |
# return x.type(out_dtype) | |
assert not split_attn, "split_attn is not supported in flash attention 3 or sage attention." | |
# preprocess query: in Wan 2.1, q_lens is always None. | |
if q_lens is None: | |
q = half(q.flatten(0, 1)) | |
q_lens = torch.tensor([lq] * b, dtype=torch.int32).to(device=q.device, non_blocking=True) | |
else: | |
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)])) | |
# preprocess key, value | |
if k_lens is None: | |
k = half(k.flatten(0, 1)) | |
v = half(v.flatten(0, 1)) | |
k_lens = torch.tensor([lk] * b, dtype=torch.int32).to(device=k.device, non_blocking=True) | |
else: | |
# Note: in Wan 2.1, all k_lens are same if we have same image size in the batch. | |
if min(k_lens) == max(k_lens) and k.shape[1] == k_lens[0]: | |
# B, L, N, C -> BN, L, C | |
k = half(k.flatten(0, 1)) | |
v = half(v.flatten(0, 1)) | |
else: | |
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)])) | |
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)])) | |
q = q.to(v.dtype) | |
k = k.to(v.dtype) | |
if q_scale is not None: | |
q = q * q_scale | |
# if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE: | |
# warnings.warn("Flash attention 3 is not available, use flash attention 2 instead.") | |
# apply attention | |
# if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE: | |
if attn_mode == "flash3": | |
# Not tested yet in musubi tuner. | |
# Note: dropout_p, window_size are not supported in FA3 now. | |
x = flash_attn_interface.flash_attn_varlen_func( | |
q=q, | |
k=k, | |
v=v, | |
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True), | |
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True), | |
seqused_q=None, | |
seqused_k=None, | |
max_seqlen_q=lq, | |
max_seqlen_k=lk, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
deterministic=deterministic, | |
)[0].unflatten(0, (b, lq)) | |
# elif (version is None or version == 2) and FLASH_ATTN_2_AVAILABLE: | |
# # assert FLASH_ATTN_2_AVAILABLE | |
# x = flash_attn.flash_attn_varlen_func( | |
# q=q, | |
# k=k, | |
# v=v, | |
# cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True), | |
# cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True), | |
# max_seqlen_q=lq, | |
# max_seqlen_k=lk, | |
# dropout_p=dropout_p, | |
# softmax_scale=softmax_scale, | |
# causal=causal, | |
# window_size=window_size, | |
# deterministic=deterministic, | |
# ).unflatten(0, (b, lq)) | |
# elif version is None and SAGE_ATTN_AVAILABLE: | |
elif attn_mode == "sageattn": | |
# print("Using sage attention") | |
assert not causal, "SAGE attention does not support causal attention." | |
x = sageattention.sageattn_varlen( | |
q=q, | |
k=k, | |
v=v, | |
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True), | |
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True), | |
max_seqlen_q=lq, | |
max_seqlen_k=lk, | |
sm_scale=softmax_scale, | |
).unflatten(0, (b, lq)) | |
else: | |
raise ValueError(f"Unknown attention mode: {attn_mode}") | |
# output | |
return x.type(out_dtype) | |
def attention( | |
q, | |
k, | |
v, | |
q_lens=None, | |
k_lens=None, | |
dropout_p=0.0, | |
softmax_scale=None, | |
q_scale=None, | |
causal=False, | |
window_size=(-1, -1), | |
deterministic=False, | |
dtype=torch.bfloat16, | |
fa_version=None, | |
): | |
if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE: | |
return flash_attention( | |
q=q, | |
k=k, | |
v=v, | |
q_lens=q_lens, | |
k_lens=k_lens, | |
dropout_p=dropout_p, | |
softmax_scale=softmax_scale, | |
q_scale=q_scale, | |
causal=causal, | |
window_size=window_size, | |
deterministic=deterministic, | |
dtype=dtype, | |
version=fa_version, | |
) | |
else: | |
if q_lens is not None or k_lens is not None: | |
warnings.warn( | |
"Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance." | |
) | |
attn_mask = None | |
q = q.transpose(1, 2).to(dtype) | |
k = k.transpose(1, 2).to(dtype) | |
v = v.transpose(1, 2).to(dtype) | |
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p) | |
out = out.transpose(1, 2).contiguous() | |
return out | |