File size: 10,613 Bytes
e0336bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
from typing import Optional
import torch

try:
    import flash_attn_interface

    FLASH_ATTN_3_AVAILABLE = True
except ModuleNotFoundError:
    FLASH_ATTN_3_AVAILABLE = False

try:
    import flash_attn

    FLASH_ATTN_2_AVAILABLE = True
except ModuleNotFoundError:
    FLASH_ATTN_2_AVAILABLE = False

try:
    import sageattention

    SAGE_ATTN_AVAILABLE = True
except ModuleNotFoundError:
    SAGE_ATTN_AVAILABLE = False

try:
    import xformers.ops as xops

    XFORMERS_AVAILABLE = True
except ImportError:
    XFORMERS_AVAILABLE = False


import warnings

__all__ = [
    "flash_attention",
    "attention",
]


def flash_attention(
    qkv,
    q_lens=None,
    k_lens=None,
    dropout_p=0.0,
    softmax_scale=None,
    q_scale=None,
    causal=False,
    window_size=(-1, -1),
    deterministic=False,
    dtype=torch.bfloat16,
    version=None,
    attn_mode: Optional[str] = "torch",
    split_attn: bool = False,
):
    """
    q:              [B, Lq, Nq, C1].
    k:              [B, Lk, Nk, C1].
    v:              [B, Lk, Nk, C2]. Nq must be divisible by Nk.
    q_lens:         [B].
    k_lens:         [B].
    dropout_p:      float. Dropout probability.
    softmax_scale:  float. The scaling of QK^T before applying softmax.
    causal:         bool. Whether to apply causal attention mask.
    window_size:    (left right). If not (-1, -1), apply sliding window local attention.
    deterministic:  bool. If True, slightly slower and uses more memory.
    dtype:          torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.
    """
    q, k, v = qkv
    qkv.clear()

    half_dtypes = (torch.float16, torch.bfloat16)
    assert dtype in half_dtypes
    # assert q.device.type == "cuda" and q.size(-1) <= 256

    # params
    b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype

    def half(x):
        return x if x.dtype in half_dtypes else x.to(dtype)

    # We cannot test Flash attention 3 in musubi tuner, so keep the original code.
    # Customized code (except for flash attention 3) is not supported q_lens and k_lens.
    if attn_mode != "flash3" and attn_mode != "sageattn":
        assert q_lens is None, "q_lens is not supported except for flash attention 3."
        assert k_lens is None or (
            min(k_lens) == max(k_lens) and k_lens[0] == lk
        ), "k_lens is not supported except for flash attention 3."

    # SDPA
    if attn_mode == "torch" or attn_mode == "sdpa":
        assert not deterministic, "deterministic is not supported in scaled_dot_product_attention."
        if q_scale is not None:
            q = q * q_scale
        q = half(q.transpose(1, 2))
        k = half(k.transpose(1, 2))
        v = half(v.transpose(1, 2))

        if not split_attn:
            q = torch.nn.functional.scaled_dot_product_attention(
                q, k, v, is_causal=causal, dropout_p=dropout_p, scale=softmax_scale
            )
            x = q
        else:
            x = torch.empty_like(q)
            for i in range(q.size(0)):
                x[i : i + 1] = torch.nn.functional.scaled_dot_product_attention(
                    q[i : i + 1], k[i : i + 1], v[i : i + 1], is_causal=causal, dropout_p=dropout_p, scale=softmax_scale
                )

        del q, k, v
        x = x.transpose(1, 2).contiguous()
        return x.type(out_dtype)

    # flash attention 2
    if attn_mode == "flash" or attn_mode == "flash2":
        if q_scale is not None:
            q = q * q_scale
        q = half(q)
        k = half(k)
        v = half(v)

        if not split_attn:
            q = flash_attn.flash_attn_func(q, k, v, dropout_p, softmax_scale, causal, window_size, deterministic=deterministic)
            x = q
        else:
            x = torch.empty_like(q)
            for i in range(q.size(0)):
                x[i : i + 1] = flash_attn.flash_attn_func(
                    q[i : i + 1],
                    k[i : i + 1],
                    v[i : i + 1],
                    dropout_p,
                    softmax_scale,
                    causal,
                    window_size,
                    deterministic=deterministic,
                )
        del q, k, v
        return x.type(out_dtype)

    # xformers
    if attn_mode == "xformers":
        assert not deterministic, "deterministic is not supported in xformers."
        assert not causal, "causal is not supported in xformers."
        if q_scale is not None:
            q = q * q_scale
        q = half(q)
        k = half(k)
        v = half(v)

        if not split_attn:
            q = xops.memory_efficient_attention(q, k, v, p=dropout_p, scale=softmax_scale)
            x = q
        else:
            x = torch.empty_like(q)
            for i in range(q.size(0)):
                x[i : i + 1] = xops.memory_efficient_attention(
                    q[i : i + 1], k[i : i + 1], v[i : i + 1], p=dropout_p, scale=softmax_scale
                )

        del q, k, v
        return x.type(out_dtype)

    # sage attention with fixed length seems to cause NaN in I2V inference.
    # # sage attention
    # if attn_mode == "sageattn":
    #     print("Using sage attention")
    #     assert not deterministic, "deterministic is not supported in sage attention."
    #     if q_scale is not None:
    #         q = q * q_scale
    #     q, k, v = half(q), half(k), half(v)
    #     x = sageattention.sageattn(q, k, v, "NHD", is_causal=causal, sm_scale=softmax_scale)
    #     del q, k, v
    #     return x.type(out_dtype)

    assert not split_attn, "split_attn is not supported in flash attention 3 or sage attention."

    # preprocess query: in Wan 2.1, q_lens is always None.
    if q_lens is None:
        q = half(q.flatten(0, 1))
        q_lens = torch.tensor([lq] * b, dtype=torch.int32).to(device=q.device, non_blocking=True)
    else:
        q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))

    # preprocess key, value
    if k_lens is None:
        k = half(k.flatten(0, 1))
        v = half(v.flatten(0, 1))
        k_lens = torch.tensor([lk] * b, dtype=torch.int32).to(device=k.device, non_blocking=True)
    else:
        # Note: in Wan 2.1, all k_lens are same if we have same image size in the batch.
        if min(k_lens) == max(k_lens) and k.shape[1] == k_lens[0]:
            # B, L, N, C -> BN, L, C
            k = half(k.flatten(0, 1))
            v = half(v.flatten(0, 1))
        else:
            k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
            v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))

    q = q.to(v.dtype)
    k = k.to(v.dtype)

    if q_scale is not None:
        q = q * q_scale

    # if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
    #     warnings.warn("Flash attention 3 is not available, use flash attention 2 instead.")

    # apply attention
    # if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE:
    if attn_mode == "flash3":
        # Not tested yet in musubi tuner.
        # Note: dropout_p, window_size are not supported in FA3 now.
        x = flash_attn_interface.flash_attn_varlen_func(
            q=q,
            k=k,
            v=v,
            cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True),
            cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True),
            seqused_q=None,
            seqused_k=None,
            max_seqlen_q=lq,
            max_seqlen_k=lk,
            softmax_scale=softmax_scale,
            causal=causal,
            deterministic=deterministic,
        )[0].unflatten(0, (b, lq))
    # elif (version is None or version == 2) and FLASH_ATTN_2_AVAILABLE:
    #     # assert FLASH_ATTN_2_AVAILABLE
    #     x = flash_attn.flash_attn_varlen_func(
    #         q=q,
    #         k=k,
    #         v=v,
    #         cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True),
    #         cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True),
    #         max_seqlen_q=lq,
    #         max_seqlen_k=lk,
    #         dropout_p=dropout_p,
    #         softmax_scale=softmax_scale,
    #         causal=causal,
    #         window_size=window_size,
    #         deterministic=deterministic,
    #     ).unflatten(0, (b, lq))
    # elif version is None and SAGE_ATTN_AVAILABLE:
    elif attn_mode == "sageattn":
        # print("Using sage attention")
        assert not causal, "SAGE attention does not support causal attention."
        x = sageattention.sageattn_varlen(
            q=q,
            k=k,
            v=v,
            cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True),
            cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True),
            max_seqlen_q=lq,
            max_seqlen_k=lk,
            sm_scale=softmax_scale,
        ).unflatten(0, (b, lq))
    else:
        raise ValueError(f"Unknown attention mode: {attn_mode}")

    # output
    return x.type(out_dtype)


def attention(
    q,
    k,
    v,
    q_lens=None,
    k_lens=None,
    dropout_p=0.0,
    softmax_scale=None,
    q_scale=None,
    causal=False,
    window_size=(-1, -1),
    deterministic=False,
    dtype=torch.bfloat16,
    fa_version=None,
):
    if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE:
        return flash_attention(
            q=q,
            k=k,
            v=v,
            q_lens=q_lens,
            k_lens=k_lens,
            dropout_p=dropout_p,
            softmax_scale=softmax_scale,
            q_scale=q_scale,
            causal=causal,
            window_size=window_size,
            deterministic=deterministic,
            dtype=dtype,
            version=fa_version,
        )
    else:
        if q_lens is not None or k_lens is not None:
            warnings.warn(
                "Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance."
            )
        attn_mask = None

        q = q.transpose(1, 2).to(dtype)
        k = k.transpose(1, 2).to(dtype)
        v = v.transpose(1, 2).to(dtype)

        out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p)

        out = out.transpose(1, 2).contiguous()
        return out