Framepack-H111 / framepack_lora_inf_utils.py
rahul7star's picture
Upload 303 files
e0336bc verified
import os
import re
from typing import Optional
import torch
from safetensors.torch import load_file
from tqdm import tqdm
import logging
from utils.safetensors_utils import MemoryEfficientSafeOpen
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
from modules.fp8_optimization_utils import optimize_state_dict_with_fp8_on_the_fly
def merge_lora_to_state_dict(
model_file: str,
lora_files: Optional[list[str]],
multipliers: Optional[list[float]],
fp8_optimization: bool,
device: torch.device,
move_to_device: bool = False,
) -> dict[str, torch.Tensor]:
"""
Merge LoRA weights into the state dict of a model.
"""
# if the file name ends with 00001-of-00004 etc, we need to load the files with the same prefix
basename = os.path.basename(model_file)
match = re.match(r"^(.*?)(\d+)-of-(\d+)\.safetensors$", basename)
if match:
prefix = basename[: match.start(2)]
count = int(match.group(3))
model_files = [os.path.normpath(model_file)]
for i in range(count):
file_name = f"{prefix}{i+1:05d}-of-{count:05d}.safetensors"
file_path = os.path.join(os.path.dirname(model_file), file_name)
file_path = os.path.normpath(file_path)
if os.path.exists(file_path) and file_path not in model_files:
model_files.append(file_path)
logger.info(f"Loading split weights: {model_files}")
else:
model_files = [os.path.normpath(model_file)]
list_of_lora_sd = []
if lora_files is not None:
for lora_file in lora_files:
# Load LoRA safetensors file
lora_sd = load_file(lora_file)
# Check the format of the LoRA file
keys = list(lora_sd.keys())
if keys[0].startswith("lora_unet_"):
logging.info(f"Musubi Tuner LoRA detected")
else:
transformer_prefixes = ["diffusion_model", "transformer"] # to ignore Text Encoder modules
lora_suffix = None
prefix = None
for key in keys:
if lora_suffix is None and "lora_A" in key:
lora_suffix = "lora_A"
if prefix is None:
pfx = key.split(".")[0]
if pfx in transformer_prefixes:
prefix = pfx
if lora_suffix is not None and prefix is not None:
break
if lora_suffix == "lora_A" and prefix is not None:
logging.info(f"Diffusion-pipe (?) LoRA detected")
lora_sd = convert_from_diffusion_pipe_or_something(lora_sd, "lora_unet_")
else:
logging.info(f"LoRA file format not recognized: {os.path.basename(lora_file)}")
lora_sd = None
if lora_sd is not None:
# Check LoRA is for FramePack or for HunyuanVideo
is_hunyuan = False
for key in lora_sd.keys():
if "double_blocks" in key or "single_blocks" in key:
is_hunyuan = True
break
if is_hunyuan:
logging.info("HunyuanVideo LoRA detected, converting to FramePack format")
lora_sd = convert_hunyuan_to_framepack(lora_sd)
if lora_sd is not None:
list_of_lora_sd.append(lora_sd)
if len(list_of_lora_sd) == 0:
# no LoRA files found, just load the model
return load_safetensors_with_fp8_optimization(model_files, fp8_optimization, device, move_to_device, weight_hook=None)
return load_safetensors_with_lora_and_fp8(model_files, list_of_lora_sd, multipliers, fp8_optimization, device, move_to_device)
def convert_from_diffusion_pipe_or_something(lora_sd: dict[str, torch.Tensor], prefix: str) -> dict[str, torch.Tensor]:
"""
Convert LoRA weights to the format used by the diffusion pipeline to Musubi Tuner.
Copy from Musubi Tuner repo.
"""
# convert from diffusers(?) to default LoRA
# Diffusers format: {"diffusion_model.module.name.lora_A.weight": weight, "diffusion_model.module.name.lora_B.weight": weight, ...}
# default LoRA format: {"prefix_module_name.lora_down.weight": weight, "prefix_module_name.lora_up.weight": weight, ...}
# note: Diffusers has no alpha, so alpha is set to rank
new_weights_sd = {}
lora_dims = {}
for key, weight in lora_sd.items():
diffusers_prefix, key_body = key.split(".", 1)
if diffusers_prefix != "diffusion_model" and diffusers_prefix != "transformer":
print(f"unexpected key: {key} in diffusers format")
continue
new_key = f"{prefix}{key_body}".replace(".", "_").replace("_lora_A_", ".lora_down.").replace("_lora_B_", ".lora_up.")
new_weights_sd[new_key] = weight
lora_name = new_key.split(".")[0] # before first dot
if lora_name not in lora_dims and "lora_down" in new_key:
lora_dims[lora_name] = weight.shape[0]
# add alpha with rank
for lora_name, dim in lora_dims.items():
new_weights_sd[f"{lora_name}.alpha"] = torch.tensor(dim)
return new_weights_sd
def load_safetensors_with_lora_and_fp8(
model_files: list[str],
list_of_lora_sd: list[dict[str, torch.Tensor]],
multipliers: Optional[list[float]],
fp8_optimization: bool,
device: torch.device,
move_to_device: bool = False,
) -> dict[str, torch.Tensor]:
"""
Merge LoRA weights into the state dict of a model with fp8 optimization if needed.
"""
if multipliers is None:
multipliers = [1.0] * len(list_of_lora_sd)
if len(multipliers) > len(list_of_lora_sd):
multipliers = multipliers[: len(list_of_lora_sd)]
if len(multipliers) < len(list_of_lora_sd):
multipliers += [1.0] * (len(list_of_lora_sd) - len(multipliers))
multipliers = [float(m) for m in multipliers]
list_of_lora_weight_keys = []
for lora_sd in list_of_lora_sd:
lora_weight_keys = set(lora_sd.keys())
list_of_lora_weight_keys.append(lora_weight_keys)
# Merge LoRA weights into the state dict
print(f"Merging LoRA weights into state dict on the fly. multipliers: {multipliers}")
# make hook for LoRA merging
def weight_hook(model_weight_key, model_weight):
nonlocal list_of_lora_weight_keys, list_of_lora_sd, multipliers
if not model_weight_key.endswith(".weight"):
return model_weight
original_device = model_weight.device
if original_device != device:
model_weight = model_weight.to(device) # to make calculation faster
for lora_weight_keys, lora_sd, multiplier in zip(list_of_lora_weight_keys, list_of_lora_sd, multipliers):
# check if this weight has LoRA weights
lora_name = model_weight_key.rsplit(".", 1)[0] # remove trailing ".weight"
lora_name = "lora_unet_" + lora_name.replace(".", "_")
down_key = lora_name + ".lora_down.weight"
up_key = lora_name + ".lora_up.weight"
alpha_key = lora_name + ".alpha"
if down_key not in lora_weight_keys or up_key not in lora_weight_keys:
return model_weight
# get LoRA weights
down_weight = lora_sd[down_key]
up_weight = lora_sd[up_key]
dim = down_weight.size()[0]
alpha = lora_sd.get(alpha_key, dim)
scale = alpha / dim
down_weight = down_weight.to(device)
up_weight = up_weight.to(device)
# W <- W + U * D
if len(model_weight.size()) == 2:
# linear
if len(up_weight.size()) == 4: # use linear projection mismatch
up_weight = up_weight.squeeze(3).squeeze(2)
down_weight = down_weight.squeeze(3).squeeze(2)
model_weight = model_weight + multiplier * (up_weight @ down_weight) * scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
model_weight = (
model_weight
+ multiplier
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
# logger.info(conved.size(), weight.size(), module.stride, module.padding)
model_weight = model_weight + multiplier * conved * scale
# remove LoRA keys from set
lora_weight_keys.remove(down_key)
lora_weight_keys.remove(up_key)
if alpha_key in lora_weight_keys:
lora_weight_keys.remove(alpha_key)
model_weight = model_weight.to(original_device) # move back to original device
return model_weight
state_dict = load_safetensors_with_fp8_optimization(
model_files, fp8_optimization, device, move_to_device, weight_hook=weight_hook
)
for lora_weight_keys in list_of_lora_weight_keys:
if len(lora_weight_keys) > 0:
# if there are still LoRA keys left, it means they are not used in the model
# this is a warning, not an error
logger.warning(f"Warning: {len(lora_weight_keys)} LoRA keys not used in the model: {lora_weight_keys}")
return state_dict
def convert_hunyuan_to_framepack(lora_sd: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
"""
Convert HunyuanVideo LoRA weights to FramePack format.
"""
new_lora_sd = {}
for key, weight in lora_sd.items():
if "double_blocks" in key:
key = key.replace("double_blocks", "transformer_blocks")
key = key.replace("img_mod_linear", "norm1_linear")
key = key.replace("img_attn_qkv", "attn_to_QKV") # split later
key = key.replace("img_attn_proj", "attn_to_out_0")
key = key.replace("img_mlp_fc1", "ff_net_0_proj")
key = key.replace("img_mlp_fc2", "ff_net_2")
key = key.replace("txt_mod_linear", "norm1_context_linear")
key = key.replace("txt_attn_qkv", "attn_add_QKV_proj") # split later
key = key.replace("txt_attn_proj", "attn_to_add_out")
key = key.replace("txt_mlp_fc1", "ff_context_net_0_proj")
key = key.replace("txt_mlp_fc2", "ff_context_net_2")
elif "single_blocks" in key:
key = key.replace("single_blocks", "single_transformer_blocks")
key = key.replace("linear1", "attn_to_QKVM") # split later
key = key.replace("linear2", "proj_out")
key = key.replace("modulation_linear", "norm_linear")
else:
print(f"Unsupported module name: {key}, only double_blocks and single_blocks are supported")
continue
if "QKVM" in key:
# split QKVM into Q, K, V, M
key_q = key.replace("QKVM", "q")
key_k = key.replace("QKVM", "k")
key_v = key.replace("QKVM", "v")
key_m = key.replace("attn_to_QKVM", "proj_mlp")
if "_down" in key or "alpha" in key:
# copy QKVM weight or alpha to Q, K, V, M
assert "alpha" in key or weight.size(1) == 3072, f"QKVM weight size mismatch: {key}. {weight.size()}"
new_lora_sd[key_q] = weight
new_lora_sd[key_k] = weight
new_lora_sd[key_v] = weight
new_lora_sd[key_m] = weight
elif "_up" in key:
# split QKVM weight into Q, K, V, M
assert weight.size(0) == 21504, f"QKVM weight size mismatch: {key}. {weight.size()}"
new_lora_sd[key_q] = weight[:3072]
new_lora_sd[key_k] = weight[3072 : 3072 * 2]
new_lora_sd[key_v] = weight[3072 * 2 : 3072 * 3]
new_lora_sd[key_m] = weight[3072 * 3 :] # 21504 - 3072 * 3 = 12288
else:
print(f"Unsupported module name: {key}")
continue
elif "QKV" in key:
# split QKV into Q, K, V
key_q = key.replace("QKV", "q")
key_k = key.replace("QKV", "k")
key_v = key.replace("QKV", "v")
if "_down" in key or "alpha" in key:
# copy QKV weight or alpha to Q, K, V
assert "alpha" in key or weight.size(1) == 3072, f"QKV weight size mismatch: {key}. {weight.size()}"
new_lora_sd[key_q] = weight
new_lora_sd[key_k] = weight
new_lora_sd[key_v] = weight
elif "_up" in key:
# split QKV weight into Q, K, V
assert weight.size(0) == 3072 * 3, f"QKV weight size mismatch: {key}. {weight.size()}"
new_lora_sd[key_q] = weight[:3072]
new_lora_sd[key_k] = weight[3072 : 3072 * 2]
new_lora_sd[key_v] = weight[3072 * 2 :]
else:
print(f"Unsupported module name: {key}")
continue
else:
# no split needed
new_lora_sd[key] = weight
return new_lora_sd
def load_safetensors_with_fp8_optimization(
model_files: list[str], fp8_optimization: bool, device: torch.device, move_to_device: bool, weight_hook: callable = None
) -> dict[str, torch.Tensor]:
"""
Load state dict from safetensors files and merge LoRA weights into the state dict with fp8 optimization if needed.
"""
if fp8_optimization:
TARGET_KEYS = ["transformer_blocks", "single_transformer_blocks"]
EXCLUDE_KEYS = ["norm"] # Exclude norm layers (e.g., LayerNorm, RMSNorm) from FP8
state_dict = optimize_state_dict_with_fp8_on_the_fly(
model_files, device, TARGET_KEYS, EXCLUDE_KEYS, move_to_device=move_to_device, weight_hook=weight_hook
)
else:
state_dict = {}
for model_file in model_files:
with MemoryEfficientSafeOpen(model_file) as f:
for key in tqdm(f.keys(), desc=f"Loading {model_file}", leave=False):
value = f.get_tensor(key)
if weight_hook is not None:
value = weight_hook(key, value)
if move_to_device:
value = value.to(device)
state_dict[key] = value
return state_dict