Spaces:
Running
Running
File size: 14,644 Bytes
e0336bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import os
import re
from typing import Optional
import torch
from safetensors.torch import load_file
from tqdm import tqdm
import logging
from utils.safetensors_utils import MemoryEfficientSafeOpen
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
from modules.fp8_optimization_utils import optimize_state_dict_with_fp8_on_the_fly
def merge_lora_to_state_dict(
model_file: str,
lora_files: Optional[list[str]],
multipliers: Optional[list[float]],
fp8_optimization: bool,
device: torch.device,
move_to_device: bool = False,
) -> dict[str, torch.Tensor]:
"""
Merge LoRA weights into the state dict of a model.
"""
# if the file name ends with 00001-of-00004 etc, we need to load the files with the same prefix
basename = os.path.basename(model_file)
match = re.match(r"^(.*?)(\d+)-of-(\d+)\.safetensors$", basename)
if match:
prefix = basename[: match.start(2)]
count = int(match.group(3))
model_files = [os.path.normpath(model_file)]
for i in range(count):
file_name = f"{prefix}{i+1:05d}-of-{count:05d}.safetensors"
file_path = os.path.join(os.path.dirname(model_file), file_name)
file_path = os.path.normpath(file_path)
if os.path.exists(file_path) and file_path not in model_files:
model_files.append(file_path)
logger.info(f"Loading split weights: {model_files}")
else:
model_files = [os.path.normpath(model_file)]
list_of_lora_sd = []
if lora_files is not None:
for lora_file in lora_files:
# Load LoRA safetensors file
lora_sd = load_file(lora_file)
# Check the format of the LoRA file
keys = list(lora_sd.keys())
if keys[0].startswith("lora_unet_"):
logging.info(f"Musubi Tuner LoRA detected")
else:
transformer_prefixes = ["diffusion_model", "transformer"] # to ignore Text Encoder modules
lora_suffix = None
prefix = None
for key in keys:
if lora_suffix is None and "lora_A" in key:
lora_suffix = "lora_A"
if prefix is None:
pfx = key.split(".")[0]
if pfx in transformer_prefixes:
prefix = pfx
if lora_suffix is not None and prefix is not None:
break
if lora_suffix == "lora_A" and prefix is not None:
logging.info(f"Diffusion-pipe (?) LoRA detected")
lora_sd = convert_from_diffusion_pipe_or_something(lora_sd, "lora_unet_")
else:
logging.info(f"LoRA file format not recognized: {os.path.basename(lora_file)}")
lora_sd = None
if lora_sd is not None:
# Check LoRA is for FramePack or for HunyuanVideo
is_hunyuan = False
for key in lora_sd.keys():
if "double_blocks" in key or "single_blocks" in key:
is_hunyuan = True
break
if is_hunyuan:
logging.info("HunyuanVideo LoRA detected, converting to FramePack format")
lora_sd = convert_hunyuan_to_framepack(lora_sd)
if lora_sd is not None:
list_of_lora_sd.append(lora_sd)
if len(list_of_lora_sd) == 0:
# no LoRA files found, just load the model
return load_safetensors_with_fp8_optimization(model_files, fp8_optimization, device, move_to_device, weight_hook=None)
return load_safetensors_with_lora_and_fp8(model_files, list_of_lora_sd, multipliers, fp8_optimization, device, move_to_device)
def convert_from_diffusion_pipe_or_something(lora_sd: dict[str, torch.Tensor], prefix: str) -> dict[str, torch.Tensor]:
"""
Convert LoRA weights to the format used by the diffusion pipeline to Musubi Tuner.
Copy from Musubi Tuner repo.
"""
# convert from diffusers(?) to default LoRA
# Diffusers format: {"diffusion_model.module.name.lora_A.weight": weight, "diffusion_model.module.name.lora_B.weight": weight, ...}
# default LoRA format: {"prefix_module_name.lora_down.weight": weight, "prefix_module_name.lora_up.weight": weight, ...}
# note: Diffusers has no alpha, so alpha is set to rank
new_weights_sd = {}
lora_dims = {}
for key, weight in lora_sd.items():
diffusers_prefix, key_body = key.split(".", 1)
if diffusers_prefix != "diffusion_model" and diffusers_prefix != "transformer":
print(f"unexpected key: {key} in diffusers format")
continue
new_key = f"{prefix}{key_body}".replace(".", "_").replace("_lora_A_", ".lora_down.").replace("_lora_B_", ".lora_up.")
new_weights_sd[new_key] = weight
lora_name = new_key.split(".")[0] # before first dot
if lora_name not in lora_dims and "lora_down" in new_key:
lora_dims[lora_name] = weight.shape[0]
# add alpha with rank
for lora_name, dim in lora_dims.items():
new_weights_sd[f"{lora_name}.alpha"] = torch.tensor(dim)
return new_weights_sd
def load_safetensors_with_lora_and_fp8(
model_files: list[str],
list_of_lora_sd: list[dict[str, torch.Tensor]],
multipliers: Optional[list[float]],
fp8_optimization: bool,
device: torch.device,
move_to_device: bool = False,
) -> dict[str, torch.Tensor]:
"""
Merge LoRA weights into the state dict of a model with fp8 optimization if needed.
"""
if multipliers is None:
multipliers = [1.0] * len(list_of_lora_sd)
if len(multipliers) > len(list_of_lora_sd):
multipliers = multipliers[: len(list_of_lora_sd)]
if len(multipliers) < len(list_of_lora_sd):
multipliers += [1.0] * (len(list_of_lora_sd) - len(multipliers))
multipliers = [float(m) for m in multipliers]
list_of_lora_weight_keys = []
for lora_sd in list_of_lora_sd:
lora_weight_keys = set(lora_sd.keys())
list_of_lora_weight_keys.append(lora_weight_keys)
# Merge LoRA weights into the state dict
print(f"Merging LoRA weights into state dict on the fly. multipliers: {multipliers}")
# make hook for LoRA merging
def weight_hook(model_weight_key, model_weight):
nonlocal list_of_lora_weight_keys, list_of_lora_sd, multipliers
if not model_weight_key.endswith(".weight"):
return model_weight
original_device = model_weight.device
if original_device != device:
model_weight = model_weight.to(device) # to make calculation faster
for lora_weight_keys, lora_sd, multiplier in zip(list_of_lora_weight_keys, list_of_lora_sd, multipliers):
# check if this weight has LoRA weights
lora_name = model_weight_key.rsplit(".", 1)[0] # remove trailing ".weight"
lora_name = "lora_unet_" + lora_name.replace(".", "_")
down_key = lora_name + ".lora_down.weight"
up_key = lora_name + ".lora_up.weight"
alpha_key = lora_name + ".alpha"
if down_key not in lora_weight_keys or up_key not in lora_weight_keys:
return model_weight
# get LoRA weights
down_weight = lora_sd[down_key]
up_weight = lora_sd[up_key]
dim = down_weight.size()[0]
alpha = lora_sd.get(alpha_key, dim)
scale = alpha / dim
down_weight = down_weight.to(device)
up_weight = up_weight.to(device)
# W <- W + U * D
if len(model_weight.size()) == 2:
# linear
if len(up_weight.size()) == 4: # use linear projection mismatch
up_weight = up_weight.squeeze(3).squeeze(2)
down_weight = down_weight.squeeze(3).squeeze(2)
model_weight = model_weight + multiplier * (up_weight @ down_weight) * scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
model_weight = (
model_weight
+ multiplier
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
# logger.info(conved.size(), weight.size(), module.stride, module.padding)
model_weight = model_weight + multiplier * conved * scale
# remove LoRA keys from set
lora_weight_keys.remove(down_key)
lora_weight_keys.remove(up_key)
if alpha_key in lora_weight_keys:
lora_weight_keys.remove(alpha_key)
model_weight = model_weight.to(original_device) # move back to original device
return model_weight
state_dict = load_safetensors_with_fp8_optimization(
model_files, fp8_optimization, device, move_to_device, weight_hook=weight_hook
)
for lora_weight_keys in list_of_lora_weight_keys:
if len(lora_weight_keys) > 0:
# if there are still LoRA keys left, it means they are not used in the model
# this is a warning, not an error
logger.warning(f"Warning: {len(lora_weight_keys)} LoRA keys not used in the model: {lora_weight_keys}")
return state_dict
def convert_hunyuan_to_framepack(lora_sd: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
"""
Convert HunyuanVideo LoRA weights to FramePack format.
"""
new_lora_sd = {}
for key, weight in lora_sd.items():
if "double_blocks" in key:
key = key.replace("double_blocks", "transformer_blocks")
key = key.replace("img_mod_linear", "norm1_linear")
key = key.replace("img_attn_qkv", "attn_to_QKV") # split later
key = key.replace("img_attn_proj", "attn_to_out_0")
key = key.replace("img_mlp_fc1", "ff_net_0_proj")
key = key.replace("img_mlp_fc2", "ff_net_2")
key = key.replace("txt_mod_linear", "norm1_context_linear")
key = key.replace("txt_attn_qkv", "attn_add_QKV_proj") # split later
key = key.replace("txt_attn_proj", "attn_to_add_out")
key = key.replace("txt_mlp_fc1", "ff_context_net_0_proj")
key = key.replace("txt_mlp_fc2", "ff_context_net_2")
elif "single_blocks" in key:
key = key.replace("single_blocks", "single_transformer_blocks")
key = key.replace("linear1", "attn_to_QKVM") # split later
key = key.replace("linear2", "proj_out")
key = key.replace("modulation_linear", "norm_linear")
else:
print(f"Unsupported module name: {key}, only double_blocks and single_blocks are supported")
continue
if "QKVM" in key:
# split QKVM into Q, K, V, M
key_q = key.replace("QKVM", "q")
key_k = key.replace("QKVM", "k")
key_v = key.replace("QKVM", "v")
key_m = key.replace("attn_to_QKVM", "proj_mlp")
if "_down" in key or "alpha" in key:
# copy QKVM weight or alpha to Q, K, V, M
assert "alpha" in key or weight.size(1) == 3072, f"QKVM weight size mismatch: {key}. {weight.size()}"
new_lora_sd[key_q] = weight
new_lora_sd[key_k] = weight
new_lora_sd[key_v] = weight
new_lora_sd[key_m] = weight
elif "_up" in key:
# split QKVM weight into Q, K, V, M
assert weight.size(0) == 21504, f"QKVM weight size mismatch: {key}. {weight.size()}"
new_lora_sd[key_q] = weight[:3072]
new_lora_sd[key_k] = weight[3072 : 3072 * 2]
new_lora_sd[key_v] = weight[3072 * 2 : 3072 * 3]
new_lora_sd[key_m] = weight[3072 * 3 :] # 21504 - 3072 * 3 = 12288
else:
print(f"Unsupported module name: {key}")
continue
elif "QKV" in key:
# split QKV into Q, K, V
key_q = key.replace("QKV", "q")
key_k = key.replace("QKV", "k")
key_v = key.replace("QKV", "v")
if "_down" in key or "alpha" in key:
# copy QKV weight or alpha to Q, K, V
assert "alpha" in key or weight.size(1) == 3072, f"QKV weight size mismatch: {key}. {weight.size()}"
new_lora_sd[key_q] = weight
new_lora_sd[key_k] = weight
new_lora_sd[key_v] = weight
elif "_up" in key:
# split QKV weight into Q, K, V
assert weight.size(0) == 3072 * 3, f"QKV weight size mismatch: {key}. {weight.size()}"
new_lora_sd[key_q] = weight[:3072]
new_lora_sd[key_k] = weight[3072 : 3072 * 2]
new_lora_sd[key_v] = weight[3072 * 2 :]
else:
print(f"Unsupported module name: {key}")
continue
else:
# no split needed
new_lora_sd[key] = weight
return new_lora_sd
def load_safetensors_with_fp8_optimization(
model_files: list[str], fp8_optimization: bool, device: torch.device, move_to_device: bool, weight_hook: callable = None
) -> dict[str, torch.Tensor]:
"""
Load state dict from safetensors files and merge LoRA weights into the state dict with fp8 optimization if needed.
"""
if fp8_optimization:
TARGET_KEYS = ["transformer_blocks", "single_transformer_blocks"]
EXCLUDE_KEYS = ["norm"] # Exclude norm layers (e.g., LayerNorm, RMSNorm) from FP8
state_dict = optimize_state_dict_with_fp8_on_the_fly(
model_files, device, TARGET_KEYS, EXCLUDE_KEYS, move_to_device=move_to_device, weight_hook=weight_hook
)
else:
state_dict = {}
for model_file in model_files:
with MemoryEfficientSafeOpen(model_file) as f:
for key in tqdm(f.keys(), desc=f"Loading {model_file}", leave=False):
value = f.get_tensor(key)
if weight_hook is not None:
value = weight_hook(key, value)
if move_to_device:
value = value.to(device)
state_dict[key] = value
return state_dict
|