Framepack-H111 / blissful_tuner /video_processing_common.py
rahul7star's picture
Upload 303 files
e0336bc verified
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Common video processing utilities for Blissful Tuner extension.
License: Apache-2.0
Created on Thu Apr 24 11:29:37 2025
Author: Blyss
"""
import argparse
import glob
import os
import random
import shutil
import subprocess
from pathlib import Path
from typing import List, Tuple, Union, Optional
from einops import rearrange
import torchvision
from rich_argparse import RichHelpFormatter
from PIL import Image, UnidentifiedImageError
import cv2
import numpy as np
import torch
try:
from blissful_tuner.utils import BlissfulLogger, string_to_seed
except ImportError: # This is needed so we can import either within blissful_tuner directory or base musubi directory
from utils import BlissfulLogger, string_to_seed
logger = BlissfulLogger(__name__, "#8e00ed")
def set_seed(seed: Union[int, str] = None) -> int:
"""
Sets the random seed for reproducibility.
"""
if seed is None:
seed = random.getrandbits(32)
else:
try:
seed = int(seed)
except ValueError:
seed = string_to_seed(seed, bits=32)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
return seed
def setup_parser_video_common(description: Optional[str] = None) -> argparse.ArgumentParser:
"Common function for setting up the parser for GIMM-VFI, upscaler, and face fix"
parser = argparse.ArgumentParser(description=description, formatter_class=RichHelpFormatter)
parser.add_argument("--model", required=True, help="Path to the model(directory for GIMM-VFI, .safetensors otherwise)")
parser.add_argument("--input", required=True, help="Input video/image to process")
parser.add_argument("--dtype", type=str, default="fp32", help="Datatype to use")
parser.add_argument(
"--output", type=str, default=None,
help="Output file path, default is same path as input. Extension may be changed to match chosen settings!"
)
parser.add_argument("--seed", type=str, default=None, help="Seed for reproducibility")
parser.add_argument("--keep_pngs", action="store_true", help="Also keep individual frames as PNGs")
parser.add_argument(
"--codec", choices=["prores", "h264", "h265"], default="prores",
help="Codec to use, choose from 'prores', 'h264', or 'h265'. Ignored for images."
)
parser.add_argument(
"--container", choices=["mkv", "mp4"], default="mkv",
help="Container format to use, choose from 'mkv' or 'mp4'. Note prores can only go in MKV! Ignored for images."
)
return parser
class BlissfulVideoProcessor:
"""
Manager for working with images and video in generative AI workloads
"""
def __init__(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
"""
Initialize with a target device and dtype for tensor operations.
Args:
device: torch.device (e.g. cuda or cpu).
dtype: torch.dtype (e.g. torch.float32, torch.float16).
"""
self.device = device if device is not None else torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
self.dtype = dtype if dtype is not None else torch.float32
self.png_idx = 0
self.frame_dir = ""
self.input_file_path = ""
self.output_file_path = ""
self.output_directory = ""
self.new_ext = ".mkv"
self.codec = "prores"
def prepare_files_and_path(
self,
input_file_path: Optional[str] = None,
output_file_path: Optional[str] = None,
modifier: Optional[str] = "",
codec: Optional[str] = "prores",
container: Optional[str] = "mkv",
) -> Tuple[str, str]:
"""
Determine and confirm input/output paths, generating a default output
name if none provided, and set up the frames directory path and codec/container.
Args:
input_file_path: Path to the source video.
output_file_path: Desired output path or None to auto-generate.
modifier: Suffix to append to the basename when auto-generating.
codec: The video codec to use(ignored for images)
container: The container format to use(ignored for images)
Returns:
A tuple of (input_file_path, output_file_path).
"""
def _is_image_file(path: Path) -> bool:
try:
with Image.open(path) as img:
img.verify()
return True
except (UnidentifiedImageError, OSError):
return False
if codec is not None:
if codec.lower() in ["prores", "h264", "h265"]:
self.codec = codec.lower()
else:
raise ValueError("Invalid codec requested {codec}! Expected 'prores', 'h264', or 'h265'!")
if container is not None:
if container.lower() == "mkv":
self.new_ext = ".mkv"
elif container.lower() == "mp4":
if self.codec != "prores":
self.new_ext = ".mp4"
else:
logger.warning("Prores can only be written into an mkv but mp4 was passed! Selecting mkv and continuing...")
else:
raise ValueError("Invalid container format {container}! Expected 'mkv' or 'mp4'!")
if input_file_path is not None:
basename = os.path.basename(input_file_path)
name, _ = os.path.splitext(basename)
output_dir = os.path.dirname(input_file_path)
is_image = _is_image_file(input_file_path)
if is_image:
self.new_ext = ".png"
self.codec = "png"
elif output_file_path is not None:
output_dir = os.path.dirname(output_file_path)
else:
raise ValueError("At least one of input_file_path or output_file_path must be provided!")
if not output_file_path:
output_file_path = os.path.join(output_dir, f"{name}_{modifier}{self.new_ext}")
o_basename = os.path.basename(output_file_path)
o_name, o_ext = os.path.splitext(o_basename)
o_output_dir = os.path.dirname(output_file_path)
if o_ext != self.new_ext:
logger.warning(f"Extension '{o_ext[-3:]}' not valid for output! Updating to '{self.new_ext[-3:]}'...")
output_file_path = os.path.join(o_output_dir, f"{o_name}{self.new_ext}")
if os.path.exists(output_file_path):
choice = input(f"{output_file_path} exists. F for 'fix' by appending _! Overwrite?[y/N/f]: ").strip().lower()
if choice == 'f':
base = o_name
while os.path.exists(output_file_path):
base += '_'
output_file_path = os.path.join(o_output_dir, f"{base}{self.new_ext}")
elif choice != 'y':
logger.info("Aborted.")
exit()
self.input_file_path = input_file_path
self.output_file_path = output_file_path
self.output_directory = output_dir
self.frame_dir = os.path.join(self.output_directory, 'frames')
if os.path.exists(self.frame_dir):
while os.path.exists(self.frame_dir):
self.frame_dir += "_"
logger.info(f"Output will be saved to: {self.output_file_path} using {self.codec}!")
return self.input_file_path, self.output_file_path
def np_image_to_tensor(
self,
image: Union[np.ndarray, List[np.ndarray]]
) -> Union[torch.Tensor, List[torch.Tensor]]:
"""
Convert a single H×W×3 numpy image or list of images (RGB uint8 or float32)
into torch tensors of shape 1×3×H×W in [0,1], on the configured device and dtype.
Args:
image: An RGB image array or list of arrays.
Returns:
A torch.Tensor or list of torch.Tensors.
"""
def _convert(img: np.ndarray) -> torch.Tensor:
arr = img.astype(np.float32) / 255.0
tensor = torch.from_numpy(arr.transpose(2, 0, 1))
return tensor.unsqueeze(0).to(self.device, self.dtype)
if isinstance(image, np.ndarray):
return _convert(image)
return [_convert(img) for img in image]
def tensor_to_np_image(
self,
tensor: Union[torch.Tensor, List[torch.Tensor]],
rescale: bool = False
) -> Union[np.ndarray, List[np.ndarray]]:
"""
Convert a 1×3×H×W or 3×H×W torch tensor (RGB float in [0,1] or [-1,1])
into H×W×3 uint8 BGR images suitable for OpenCV (and do rescale if needed).
Args:
tensor: A torch.Tensor or list of torch.Tensors.
rescale: If True, assumes the tensor is in [-1,1] and remaps to [0,1].
Returns:
A numpy BGR image or list of images.
"""
def _convert(t: torch.Tensor) -> np.ndarray:
# 1) Bring to CPU, float, clamp
t = t.detach().cpu().float()
# 2) Optional range shift from [-1,1] to [0,1]
if rescale:
t = (t + 1.0) / 2.0
t = t.clamp(0.0, 1.0)
# 3) Normalize shape to [1,3,H,W]
if t.ndim == 3: # [3,H,W]
t = t.unsqueeze(0) # -> [1,3,H,W]
elif t.ndim != 4 or t.shape[1] != 3:
raise ValueError(f"Unexpected tensor shape: {tuple(t.shape)}")
# 4) Squeeze batch, permute to H×W×C, scale to 0–255
t = t.squeeze(0) # [3,H,W]
img = (t.permute(1, 2, 0).numpy() * 255.0).round().astype(np.uint8) # [H,W,3]
# 5) Flip RGB→BGR for OpenCV
return img[..., ::-1]
if isinstance(tensor, torch.Tensor):
return _convert(tensor)
return [_convert(t) for t in tensor]
def load_frames(
self,
make_rgb: Optional[bool] = False
) -> Tuple[List[np.ndarray], float, int, int]:
"""
Load all frames from the input video/image as uint8 BGR or RGB numpy arrays.
Args:
make_rgb: If True, convert frames to RGB.
Returns:
frames: List of H×W×3 image arrays.
fps: Frame rate of the video.
width: Original width.
height: Original height.
"""
cap = cv2.VideoCapture(self.input_file_path)
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
frames: List[np.ndarray] = []
while True:
ret, frame = cap.read()
if not ret:
break
if make_rgb:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
cap.release()
return frames, fps, width, height
def write_np_or_tensor_to_png(
self,
img: Union[np.ndarray, torch.Tensor]
) -> None:
"""
Write a single frame (numpy BGR or tensor) to the frames directory as PNG.
Args:
img: A BGR uint8 image array or a tensor to convert.
"""
if isinstance(img, torch.Tensor):
img = self.tensor_to_np_image(img)
if self.png_idx == 0:
os.makedirs(self.frame_dir, exist_ok=False)
path = os.path.join(self.frame_dir, f"{self.png_idx:06d}.png")
cv2.imwrite(path, img)
self.png_idx += 1
def write_np_images_to_output(
self,
imgs: List[np.ndarray],
fps: Optional[float] = 1,
keep_frames: Optional[bool] = False,
rescale: Optional[Tuple[int, int]] = None,
) -> None:
"""
Dump a list of BGR frames as PNGs
Args:
imgs: List of H×W×3 uint8 BGR frames.
fps: Output frame rate.
rescale: To resize the output
keep_frames: If True, do not delete PNGs afterward.
"""
os.makedirs(self.frame_dir, exist_ok=False)
for idx, img in enumerate(imgs):
path = os.path.join(self.frame_dir, f"{idx:06d}.png")
cv2.imwrite(path, img)
self.write_buffered_frames_to_output(fps, keep_frames, rescale)
def write_buffered_frames_to_output(
self,
fps: Optional[float] = 1,
keep_frames: Optional[bool] = False,
rescale: Optional[Tuple[int, int]] = None,
) -> None:
"""
Encode the PNG sequence in the frames directory to a video via ffmpeg,
or—if there's only one frame—just write out an (optionally-rescaled) PNG.
"""
# 1) get all the PNGs
pattern = os.path.join(self.frame_dir, "*.png")
png_paths = sorted(glob.glob(pattern))
# 2) single-image case
if len(png_paths) == 1:
src = png_paths[0]
if rescale is None:
# just copy the original
shutil.copy(src, self.output_file_path)
else:
# PIL approach: open, resize, save
width, height = rescale
with Image.open(src) as img:
# LANCZOS gives a high-quality down/upscale
img = img.resize((width, height), Image.LANCZOS)
img.save(self.output_file_path)
else:
# 3) multi‐frame → video
codec_args = self._get_ffmpeg_codec_args()
cmd = [
"ffmpeg", "-framerate", str(fps),
"-i", os.path.join(self.frame_dir, "%06d.png"),
] + codec_args
if rescale is not None:
w, h = rescale
cmd += ["-vf", f"scale={w}:{h}"]
# overwrite without prompt
cmd += ["-y", self.output_file_path]
subprocess.run(cmd, check=True)
if not keep_frames:
shutil.rmtree(self.frame_dir, ignore_errors=True)
def _get_ffmpeg_codec_args(self) -> List[str]:
"""
Return the ffmpeg args for codec/quality based on self.codec.
"""
if self.codec == "prores":
# prores_ks profile 3 + broadcast-safe colors
return [
"-c:v", "prores_ks",
"-profile:v", "3",
"-pix_fmt", "yuv422p10le",
"-colorspace", "1",
"-color_primaries", "1",
"-color_trc", "1",
]
if self.codec == "h264":
# libx264
return [
"-c:v", "libx264",
"-preset", "slow",
"-crf", "16",
"-pix_fmt", "yuv420p",
]
if self.codec == "h265":
# libx265
return [
"-c:v", "libx265",
"-preset", "slow",
"-crf", "16",
"-pix_fmt", "yuv420p",
]
raise ValueError(f"Unsupported codec: {self.codec}")
def save_videos_grid_advanced(
videos: torch.Tensor,
output_video: str,
codec: str,
container: str,
rescale: bool = False,
fps: int = 24,
n_rows: int = 1,
keep_frames: bool = False
):
"Function for saving Musubi Tuner outputs with more codec and container types"
# 1) rearrange so we iterate over time
videos = rearrange(videos, "b c t h w -> t b c h w")
VideoProcessor = BlissfulVideoProcessor()
VideoProcessor.prepare_files_and_path(
input_file_path=None,
output_file_path=output_video,
codec=codec,
container=container
)
outputs = []
for video in videos:
# 2) tile frames into one grid [C, H, W]
grid = torchvision.utils.make_grid(video, nrow=n_rows)
# 3) convert to an OpenCV-ready numpy array
np_img = VideoProcessor.tensor_to_np_image(grid, rescale=rescale)
outputs.append(np_img)
# 4) write them out
VideoProcessor.write_np_images_to_output(outputs, fps, keep_frames)