Spaces:
Running
Running
File size: 16,170 Bytes
e0336bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Common video processing utilities for Blissful Tuner extension.
License: Apache-2.0
Created on Thu Apr 24 11:29:37 2025
Author: Blyss
"""
import argparse
import glob
import os
import random
import shutil
import subprocess
from pathlib import Path
from typing import List, Tuple, Union, Optional
from einops import rearrange
import torchvision
from rich_argparse import RichHelpFormatter
from PIL import Image, UnidentifiedImageError
import cv2
import numpy as np
import torch
try:
from blissful_tuner.utils import BlissfulLogger, string_to_seed
except ImportError: # This is needed so we can import either within blissful_tuner directory or base musubi directory
from utils import BlissfulLogger, string_to_seed
logger = BlissfulLogger(__name__, "#8e00ed")
def set_seed(seed: Union[int, str] = None) -> int:
"""
Sets the random seed for reproducibility.
"""
if seed is None:
seed = random.getrandbits(32)
else:
try:
seed = int(seed)
except ValueError:
seed = string_to_seed(seed, bits=32)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
return seed
def setup_parser_video_common(description: Optional[str] = None) -> argparse.ArgumentParser:
"Common function for setting up the parser for GIMM-VFI, upscaler, and face fix"
parser = argparse.ArgumentParser(description=description, formatter_class=RichHelpFormatter)
parser.add_argument("--model", required=True, help="Path to the model(directory for GIMM-VFI, .safetensors otherwise)")
parser.add_argument("--input", required=True, help="Input video/image to process")
parser.add_argument("--dtype", type=str, default="fp32", help="Datatype to use")
parser.add_argument(
"--output", type=str, default=None,
help="Output file path, default is same path as input. Extension may be changed to match chosen settings!"
)
parser.add_argument("--seed", type=str, default=None, help="Seed for reproducibility")
parser.add_argument("--keep_pngs", action="store_true", help="Also keep individual frames as PNGs")
parser.add_argument(
"--codec", choices=["prores", "h264", "h265"], default="prores",
help="Codec to use, choose from 'prores', 'h264', or 'h265'. Ignored for images."
)
parser.add_argument(
"--container", choices=["mkv", "mp4"], default="mkv",
help="Container format to use, choose from 'mkv' or 'mp4'. Note prores can only go in MKV! Ignored for images."
)
return parser
class BlissfulVideoProcessor:
"""
Manager for working with images and video in generative AI workloads
"""
def __init__(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
"""
Initialize with a target device and dtype for tensor operations.
Args:
device: torch.device (e.g. cuda or cpu).
dtype: torch.dtype (e.g. torch.float32, torch.float16).
"""
self.device = device if device is not None else torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
self.dtype = dtype if dtype is not None else torch.float32
self.png_idx = 0
self.frame_dir = ""
self.input_file_path = ""
self.output_file_path = ""
self.output_directory = ""
self.new_ext = ".mkv"
self.codec = "prores"
def prepare_files_and_path(
self,
input_file_path: Optional[str] = None,
output_file_path: Optional[str] = None,
modifier: Optional[str] = "",
codec: Optional[str] = "prores",
container: Optional[str] = "mkv",
) -> Tuple[str, str]:
"""
Determine and confirm input/output paths, generating a default output
name if none provided, and set up the frames directory path and codec/container.
Args:
input_file_path: Path to the source video.
output_file_path: Desired output path or None to auto-generate.
modifier: Suffix to append to the basename when auto-generating.
codec: The video codec to use(ignored for images)
container: The container format to use(ignored for images)
Returns:
A tuple of (input_file_path, output_file_path).
"""
def _is_image_file(path: Path) -> bool:
try:
with Image.open(path) as img:
img.verify()
return True
except (UnidentifiedImageError, OSError):
return False
if codec is not None:
if codec.lower() in ["prores", "h264", "h265"]:
self.codec = codec.lower()
else:
raise ValueError("Invalid codec requested {codec}! Expected 'prores', 'h264', or 'h265'!")
if container is not None:
if container.lower() == "mkv":
self.new_ext = ".mkv"
elif container.lower() == "mp4":
if self.codec != "prores":
self.new_ext = ".mp4"
else:
logger.warning("Prores can only be written into an mkv but mp4 was passed! Selecting mkv and continuing...")
else:
raise ValueError("Invalid container format {container}! Expected 'mkv' or 'mp4'!")
if input_file_path is not None:
basename = os.path.basename(input_file_path)
name, _ = os.path.splitext(basename)
output_dir = os.path.dirname(input_file_path)
is_image = _is_image_file(input_file_path)
if is_image:
self.new_ext = ".png"
self.codec = "png"
elif output_file_path is not None:
output_dir = os.path.dirname(output_file_path)
else:
raise ValueError("At least one of input_file_path or output_file_path must be provided!")
if not output_file_path:
output_file_path = os.path.join(output_dir, f"{name}_{modifier}{self.new_ext}")
o_basename = os.path.basename(output_file_path)
o_name, o_ext = os.path.splitext(o_basename)
o_output_dir = os.path.dirname(output_file_path)
if o_ext != self.new_ext:
logger.warning(f"Extension '{o_ext[-3:]}' not valid for output! Updating to '{self.new_ext[-3:]}'...")
output_file_path = os.path.join(o_output_dir, f"{o_name}{self.new_ext}")
if os.path.exists(output_file_path):
choice = input(f"{output_file_path} exists. F for 'fix' by appending _! Overwrite?[y/N/f]: ").strip().lower()
if choice == 'f':
base = o_name
while os.path.exists(output_file_path):
base += '_'
output_file_path = os.path.join(o_output_dir, f"{base}{self.new_ext}")
elif choice != 'y':
logger.info("Aborted.")
exit()
self.input_file_path = input_file_path
self.output_file_path = output_file_path
self.output_directory = output_dir
self.frame_dir = os.path.join(self.output_directory, 'frames')
if os.path.exists(self.frame_dir):
while os.path.exists(self.frame_dir):
self.frame_dir += "_"
logger.info(f"Output will be saved to: {self.output_file_path} using {self.codec}!")
return self.input_file_path, self.output_file_path
def np_image_to_tensor(
self,
image: Union[np.ndarray, List[np.ndarray]]
) -> Union[torch.Tensor, List[torch.Tensor]]:
"""
Convert a single H×W×3 numpy image or list of images (RGB uint8 or float32)
into torch tensors of shape 1×3×H×W in [0,1], on the configured device and dtype.
Args:
image: An RGB image array or list of arrays.
Returns:
A torch.Tensor or list of torch.Tensors.
"""
def _convert(img: np.ndarray) -> torch.Tensor:
arr = img.astype(np.float32) / 255.0
tensor = torch.from_numpy(arr.transpose(2, 0, 1))
return tensor.unsqueeze(0).to(self.device, self.dtype)
if isinstance(image, np.ndarray):
return _convert(image)
return [_convert(img) for img in image]
def tensor_to_np_image(
self,
tensor: Union[torch.Tensor, List[torch.Tensor]],
rescale: bool = False
) -> Union[np.ndarray, List[np.ndarray]]:
"""
Convert a 1×3×H×W or 3×H×W torch tensor (RGB float in [0,1] or [-1,1])
into H×W×3 uint8 BGR images suitable for OpenCV (and do rescale if needed).
Args:
tensor: A torch.Tensor or list of torch.Tensors.
rescale: If True, assumes the tensor is in [-1,1] and remaps to [0,1].
Returns:
A numpy BGR image or list of images.
"""
def _convert(t: torch.Tensor) -> np.ndarray:
# 1) Bring to CPU, float, clamp
t = t.detach().cpu().float()
# 2) Optional range shift from [-1,1] to [0,1]
if rescale:
t = (t + 1.0) / 2.0
t = t.clamp(0.0, 1.0)
# 3) Normalize shape to [1,3,H,W]
if t.ndim == 3: # [3,H,W]
t = t.unsqueeze(0) # -> [1,3,H,W]
elif t.ndim != 4 or t.shape[1] != 3:
raise ValueError(f"Unexpected tensor shape: {tuple(t.shape)}")
# 4) Squeeze batch, permute to H×W×C, scale to 0–255
t = t.squeeze(0) # [3,H,W]
img = (t.permute(1, 2, 0).numpy() * 255.0).round().astype(np.uint8) # [H,W,3]
# 5) Flip RGB→BGR for OpenCV
return img[..., ::-1]
if isinstance(tensor, torch.Tensor):
return _convert(tensor)
return [_convert(t) for t in tensor]
def load_frames(
self,
make_rgb: Optional[bool] = False
) -> Tuple[List[np.ndarray], float, int, int]:
"""
Load all frames from the input video/image as uint8 BGR or RGB numpy arrays.
Args:
make_rgb: If True, convert frames to RGB.
Returns:
frames: List of H×W×3 image arrays.
fps: Frame rate of the video.
width: Original width.
height: Original height.
"""
cap = cv2.VideoCapture(self.input_file_path)
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
frames: List[np.ndarray] = []
while True:
ret, frame = cap.read()
if not ret:
break
if make_rgb:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
cap.release()
return frames, fps, width, height
def write_np_or_tensor_to_png(
self,
img: Union[np.ndarray, torch.Tensor]
) -> None:
"""
Write a single frame (numpy BGR or tensor) to the frames directory as PNG.
Args:
img: A BGR uint8 image array or a tensor to convert.
"""
if isinstance(img, torch.Tensor):
img = self.tensor_to_np_image(img)
if self.png_idx == 0:
os.makedirs(self.frame_dir, exist_ok=False)
path = os.path.join(self.frame_dir, f"{self.png_idx:06d}.png")
cv2.imwrite(path, img)
self.png_idx += 1
def write_np_images_to_output(
self,
imgs: List[np.ndarray],
fps: Optional[float] = 1,
keep_frames: Optional[bool] = False,
rescale: Optional[Tuple[int, int]] = None,
) -> None:
"""
Dump a list of BGR frames as PNGs
Args:
imgs: List of H×W×3 uint8 BGR frames.
fps: Output frame rate.
rescale: To resize the output
keep_frames: If True, do not delete PNGs afterward.
"""
os.makedirs(self.frame_dir, exist_ok=False)
for idx, img in enumerate(imgs):
path = os.path.join(self.frame_dir, f"{idx:06d}.png")
cv2.imwrite(path, img)
self.write_buffered_frames_to_output(fps, keep_frames, rescale)
def write_buffered_frames_to_output(
self,
fps: Optional[float] = 1,
keep_frames: Optional[bool] = False,
rescale: Optional[Tuple[int, int]] = None,
) -> None:
"""
Encode the PNG sequence in the frames directory to a video via ffmpeg,
or—if there's only one frame—just write out an (optionally-rescaled) PNG.
"""
# 1) get all the PNGs
pattern = os.path.join(self.frame_dir, "*.png")
png_paths = sorted(glob.glob(pattern))
# 2) single-image case
if len(png_paths) == 1:
src = png_paths[0]
if rescale is None:
# just copy the original
shutil.copy(src, self.output_file_path)
else:
# PIL approach: open, resize, save
width, height = rescale
with Image.open(src) as img:
# LANCZOS gives a high-quality down/upscale
img = img.resize((width, height), Image.LANCZOS)
img.save(self.output_file_path)
else:
# 3) multi‐frame → video
codec_args = self._get_ffmpeg_codec_args()
cmd = [
"ffmpeg", "-framerate", str(fps),
"-i", os.path.join(self.frame_dir, "%06d.png"),
] + codec_args
if rescale is not None:
w, h = rescale
cmd += ["-vf", f"scale={w}:{h}"]
# overwrite without prompt
cmd += ["-y", self.output_file_path]
subprocess.run(cmd, check=True)
if not keep_frames:
shutil.rmtree(self.frame_dir, ignore_errors=True)
def _get_ffmpeg_codec_args(self) -> List[str]:
"""
Return the ffmpeg args for codec/quality based on self.codec.
"""
if self.codec == "prores":
# prores_ks profile 3 + broadcast-safe colors
return [
"-c:v", "prores_ks",
"-profile:v", "3",
"-pix_fmt", "yuv422p10le",
"-colorspace", "1",
"-color_primaries", "1",
"-color_trc", "1",
]
if self.codec == "h264":
# libx264
return [
"-c:v", "libx264",
"-preset", "slow",
"-crf", "16",
"-pix_fmt", "yuv420p",
]
if self.codec == "h265":
# libx265
return [
"-c:v", "libx265",
"-preset", "slow",
"-crf", "16",
"-pix_fmt", "yuv420p",
]
raise ValueError(f"Unsupported codec: {self.codec}")
def save_videos_grid_advanced(
videos: torch.Tensor,
output_video: str,
codec: str,
container: str,
rescale: bool = False,
fps: int = 24,
n_rows: int = 1,
keep_frames: bool = False
):
"Function for saving Musubi Tuner outputs with more codec and container types"
# 1) rearrange so we iterate over time
videos = rearrange(videos, "b c t h w -> t b c h w")
VideoProcessor = BlissfulVideoProcessor()
VideoProcessor.prepare_files_and_path(
input_file_path=None,
output_file_path=output_video,
codec=codec,
container=container
)
outputs = []
for video in videos:
# 2) tile frames into one grid [C, H, W]
grid = torchvision.utils.make_grid(video, nrow=n_rows)
# 3) convert to an OpenCV-ready numpy array
np_img = VideoProcessor.tensor_to_np_image(grid, rescale=rescale)
outputs.append(np_img)
# 4) write them out
VideoProcessor.write_np_images_to_output(outputs, fps, keep_frames)
|