Spaces:
Running
Running
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
""" | |
Face restoration for Blissful Tuner Extension | |
License: Apache 2.0 | |
Created on Wed Apr 23 10:19:19 2025 | |
@author: blyss | |
""" | |
from rich.traceback import install as install_rich_tracebacks | |
from tqdm import tqdm | |
from gfpgan import GFPGANer | |
import torch | |
from torchvision.transforms.functional import normalize | |
from facexlib.utils.face_restoration_helper import FaceRestoreHelper | |
from codeformer.basicsr.utils.registry import ARCH_REGISTRY | |
from basicsr.utils import img2tensor, tensor2img | |
from video_processing_common import BlissfulVideoProcessor, setup_parser_video_common, set_seed | |
from utils import BlissfulLogger | |
logger = BlissfulLogger(__name__, "#8e00ed") | |
install_rich_tracebacks() | |
def main(): | |
parser = setup_parser_video_common(description="Restore faces with GFPGAN or CODEFORMER") | |
parser.add_argument("--only_center", action="store_true", help="Only process center face") | |
parser.add_argument("--weight", type=float, default=0.5, help="Strength of GFPGAN or CodeFormer power") | |
parser.add_argument('-s', '--upscale', type=float, default=1, help='The final upsampling scale of the image. Default: 1') | |
parser.add_argument('--detection_model', type=str, default='retinaface_resnet50', help='Face detector. Default: retinaface_resnet50') | |
parser.add_argument("--mode", type=str, default="gfpgan", help="Mode - either gfpgan or codeformer") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
args = parser.parse_args() | |
logger.info("Loading input...") | |
VideoProcessor = BlissfulVideoProcessor(device, torch.float32) | |
VideoProcessor.prepare_files_and_path(args.input, args.output, args.mode.upper()) | |
frames, fps, _, _ = VideoProcessor.load_frames() | |
set_seed(args.seed) | |
if args.mode.lower() == "gfpgan": | |
restorer = GFPGANer( | |
model_path=args.model, | |
upscale=args.upscale, | |
arch='clean', | |
channel_multiplier=2, | |
bg_upsampler=None) | |
# ------------------------ restore ------------------------ | |
for frame in tqdm(frames): | |
# restore faces and background if necessary | |
_, _, restored_frame = restorer.enhance( | |
frame, | |
has_aligned=False, | |
only_center_face=args.only_center, | |
paste_back=True, | |
weight=args.weight) | |
VideoProcessor.write_np_or_tensor_to_png(restored_frame) | |
del restored_frame | |
elif args.mode.lower() == "codeformer": | |
net = ARCH_REGISTRY.get('CodeFormer')( | |
dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, | |
connect_list=['32', '64', '128', '256']).to(device) | |
checkpoint = torch.load(args.model)['params_ema'] | |
net.load_state_dict(checkpoint) | |
net.eval() | |
face_helper = FaceRestoreHelper( | |
args.upscale, | |
face_size=512, | |
crop_ratio=(1, 1), | |
det_model=args.detection_model, | |
save_ext='png', | |
use_parse=True, | |
device=device) | |
for frame in tqdm(frames): | |
# clean all the intermediate results to process the next image | |
face_helper.clean_all() | |
face_helper.read_image(frame) | |
# get face landmarks for each face | |
_ = face_helper.get_face_landmarks_5( | |
only_center_face=args.only_center, resize=640, eye_dist_threshold=5) | |
# align and warp each face | |
face_helper.align_warp_face() | |
# face restoration for each cropped face | |
for cropped_face in face_helper.cropped_faces: | |
# prepare data | |
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) | |
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) | |
cropped_face_t = cropped_face_t.unsqueeze(0).to(device) | |
try: | |
with torch.no_grad(): | |
output = net(cropped_face_t, w=args.weight, adain=True)[0] | |
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) | |
del output | |
torch.cuda.empty_cache() | |
except Exception as error: | |
logger.info(f'\tFailed inference for CodeFormer: {error}') | |
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) | |
restored_face = restored_face.astype('uint8') | |
face_helper.add_restored_face(restored_face) | |
face_helper.get_inverse_affine(None) | |
restored_img = face_helper.paste_faces_to_input_image() | |
VideoProcessor.write_np_or_tensor_to_png(restored_img) | |
del restored_img | |
VideoProcessor.write_buffered_frames_to_output(fps, args.keep_pngs) | |
if __name__ == '__main__': | |
main() | |