rahul7star's picture
Upload 303 files
e0336bc verified
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Face restoration for Blissful Tuner Extension
License: Apache 2.0
Created on Wed Apr 23 10:19:19 2025
@author: blyss
"""
from rich.traceback import install as install_rich_tracebacks
from tqdm import tqdm
from gfpgan import GFPGANer
import torch
from torchvision.transforms.functional import normalize
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from codeformer.basicsr.utils.registry import ARCH_REGISTRY
from basicsr.utils import img2tensor, tensor2img
from video_processing_common import BlissfulVideoProcessor, setup_parser_video_common, set_seed
from utils import BlissfulLogger
logger = BlissfulLogger(__name__, "#8e00ed")
install_rich_tracebacks()
def main():
parser = setup_parser_video_common(description="Restore faces with GFPGAN or CODEFORMER")
parser.add_argument("--only_center", action="store_true", help="Only process center face")
parser.add_argument("--weight", type=float, default=0.5, help="Strength of GFPGAN or CodeFormer power")
parser.add_argument('-s', '--upscale', type=float, default=1, help='The final upsampling scale of the image. Default: 1')
parser.add_argument('--detection_model', type=str, default='retinaface_resnet50', help='Face detector. Default: retinaface_resnet50')
parser.add_argument("--mode", type=str, default="gfpgan", help="Mode - either gfpgan or codeformer")
device = "cuda" if torch.cuda.is_available() else "cpu"
args = parser.parse_args()
logger.info("Loading input...")
VideoProcessor = BlissfulVideoProcessor(device, torch.float32)
VideoProcessor.prepare_files_and_path(args.input, args.output, args.mode.upper())
frames, fps, _, _ = VideoProcessor.load_frames()
set_seed(args.seed)
if args.mode.lower() == "gfpgan":
restorer = GFPGANer(
model_path=args.model,
upscale=args.upscale,
arch='clean',
channel_multiplier=2,
bg_upsampler=None)
# ------------------------ restore ------------------------
for frame in tqdm(frames):
# restore faces and background if necessary
_, _, restored_frame = restorer.enhance(
frame,
has_aligned=False,
only_center_face=args.only_center,
paste_back=True,
weight=args.weight)
VideoProcessor.write_np_or_tensor_to_png(restored_frame)
del restored_frame
elif args.mode.lower() == "codeformer":
net = ARCH_REGISTRY.get('CodeFormer')(
dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
connect_list=['32', '64', '128', '256']).to(device)
checkpoint = torch.load(args.model)['params_ema']
net.load_state_dict(checkpoint)
net.eval()
face_helper = FaceRestoreHelper(
args.upscale,
face_size=512,
crop_ratio=(1, 1),
det_model=args.detection_model,
save_ext='png',
use_parse=True,
device=device)
for frame in tqdm(frames):
# clean all the intermediate results to process the next image
face_helper.clean_all()
face_helper.read_image(frame)
# get face landmarks for each face
_ = face_helper.get_face_landmarks_5(
only_center_face=args.only_center, resize=640, eye_dist_threshold=5)
# align and warp each face
face_helper.align_warp_face()
# face restoration for each cropped face
for cropped_face in face_helper.cropped_faces:
# prepare data
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
try:
with torch.no_grad():
output = net(cropped_face_t, w=args.weight, adain=True)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output
torch.cuda.empty_cache()
except Exception as error:
logger.info(f'\tFailed inference for CodeFormer: {error}')
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
restored_face = restored_face.astype('uint8')
face_helper.add_restored_face(restored_face)
face_helper.get_inverse_affine(None)
restored_img = face_helper.paste_faces_to_input_image()
VideoProcessor.write_np_or_tensor_to_png(restored_img)
del restored_img
VideoProcessor.write_buffered_frames_to_output(fps, args.keep_pngs)
if __name__ == '__main__':
main()