File size: 4,909 Bytes
e0336bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Face restoration for Blissful Tuner Extension

License: Apache 2.0
Created on Wed Apr 23 10:19:19 2025
@author: blyss
"""
from rich.traceback import install as install_rich_tracebacks
from tqdm import tqdm
from gfpgan import GFPGANer
import torch
from torchvision.transforms.functional import normalize
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from codeformer.basicsr.utils.registry import ARCH_REGISTRY
from basicsr.utils import img2tensor, tensor2img
from video_processing_common import BlissfulVideoProcessor, setup_parser_video_common, set_seed
from utils import BlissfulLogger
logger = BlissfulLogger(__name__, "#8e00ed")
install_rich_tracebacks()


def main():
    parser = setup_parser_video_common(description="Restore faces with GFPGAN or CODEFORMER")
    parser.add_argument("--only_center", action="store_true", help="Only process center face")
    parser.add_argument("--weight", type=float, default=0.5, help="Strength of GFPGAN or CodeFormer power")
    parser.add_argument('-s', '--upscale', type=float, default=1, help='The final upsampling scale of the image. Default: 1')
    parser.add_argument('--detection_model', type=str, default='retinaface_resnet50', help='Face detector. Default: retinaface_resnet50')
    parser.add_argument("--mode", type=str, default="gfpgan", help="Mode - either gfpgan or codeformer")
    device = "cuda" if torch.cuda.is_available() else "cpu"
    args = parser.parse_args()
    logger.info("Loading input...")
    VideoProcessor = BlissfulVideoProcessor(device, torch.float32)
    VideoProcessor.prepare_files_and_path(args.input, args.output, args.mode.upper())
    frames, fps, _, _ = VideoProcessor.load_frames()
    set_seed(args.seed)
    if args.mode.lower() == "gfpgan":
        restorer = GFPGANer(
            model_path=args.model,
            upscale=args.upscale,
            arch='clean',
            channel_multiplier=2,
            bg_upsampler=None)
        # ------------------------ restore ------------------------
        for frame in tqdm(frames):
            # restore faces and background if necessary
            _, _, restored_frame = restorer.enhance(
                frame,
                has_aligned=False,
                only_center_face=args.only_center,
                paste_back=True,
                weight=args.weight)
            VideoProcessor.write_np_or_tensor_to_png(restored_frame)
            del restored_frame
    elif args.mode.lower() == "codeformer":
        net = ARCH_REGISTRY.get('CodeFormer')(
            dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
            connect_list=['32', '64', '128', '256']).to(device)
        checkpoint = torch.load(args.model)['params_ema']
        net.load_state_dict(checkpoint)
        net.eval()

        face_helper = FaceRestoreHelper(
            args.upscale,
            face_size=512,
            crop_ratio=(1, 1),
            det_model=args.detection_model,
            save_ext='png',
            use_parse=True,
            device=device)

        for frame in tqdm(frames):
            # clean all the intermediate results to process the next image
            face_helper.clean_all()
            face_helper.read_image(frame)
            # get face landmarks for each face
            _ = face_helper.get_face_landmarks_5(
                only_center_face=args.only_center, resize=640, eye_dist_threshold=5)
            # align and warp each face
            face_helper.align_warp_face()
            # face restoration for each cropped face
            for cropped_face in face_helper.cropped_faces:
                # prepare data
                cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
                normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
                cropped_face_t = cropped_face_t.unsqueeze(0).to(device)

                try:
                    with torch.no_grad():
                        output = net(cropped_face_t, w=args.weight, adain=True)[0]
                        restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
                    del output
                    torch.cuda.empty_cache()
                except Exception as error:
                    logger.info(f'\tFailed inference for CodeFormer: {error}')
                    restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))

                restored_face = restored_face.astype('uint8')
                face_helper.add_restored_face(restored_face)

            face_helper.get_inverse_affine(None)
            restored_img = face_helper.paste_faces_to_input_image()
            VideoProcessor.write_np_or_tensor_to_png(restored_img)
            del restored_img

    VideoProcessor.write_buffered_frames_to_output(fps, args.keep_pngs)


if __name__ == '__main__':
    main()