DocAgent / app.py
ragunath-ravi's picture
Update app.py
75947c0 verified
import gradio as gr
import os
import json
import uuid
import asyncio
from datetime import datetime
from typing import List, Dict, Any, Optional, Generator
import logging
# Import required libraries
from huggingface_hub import InferenceClient
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.docstore.document import Document
# Import document parsers
import PyPDF2
from pptx import Presentation
import pandas as pd
from docx import Document as DocxDocument
import io
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Get HuggingFace token from environment
HF_TOKEN = os.getenv("hf_token")
if not HF_TOKEN:
raise ValueError("HuggingFace token not found in environment variables")
# Initialize HuggingFace Inference Client
client = InferenceClient(model="meta-llama/Llama-3.1-8B-Instruct", token=HF_TOKEN)
# Initialize embeddings
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
class MCPMessage:
"""Model Context Protocol Message Structure"""
def __init__(self, sender: str, receiver: str, msg_type: str,
trace_id: str = None, payload: Dict = None):
self.sender = sender
self.receiver = receiver
self.type = msg_type
self.trace_id = trace_id or str(uuid.uuid4())
self.payload = payload or {}
self.timestamp = datetime.now().isoformat()
def to_dict(self):
return {
"sender": self.sender,
"receiver": self.receiver,
"type": self.type,
"trace_id": self.trace_id,
"payload": self.payload,
"timestamp": self.timestamp
}
class MessageBus:
"""In-memory message bus for MCP communication"""
def __init__(self):
self.messages = []
self.subscribers = {}
def publish(self, message: MCPMessage):
"""Publish message to the bus"""
self.messages.append(message)
logger.info(f"Message published: {message.sender} -> {message.receiver} [{message.type}]")
# Notify subscribers
if message.receiver in self.subscribers:
for callback in self.subscribers[message.receiver]:
callback(message)
def subscribe(self, agent_name: str, callback):
"""Subscribe agent to receive messages"""
if agent_name not in self.subscribers:
self.subscribers[agent_name] = []
self.subscribers[agent_name].append(callback)
# Global message bus
message_bus = MessageBus()
class IngestionAgent:
"""Agent responsible for document parsing and preprocessing"""
def __init__(self, message_bus: MessageBus):
self.name = "IngestionAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "INGESTION_REQUEST":
self.process_documents(message)
def parse_pdf(self, file_path: str) -> str:
"""Parse PDF document"""
try:
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
except Exception as e:
logger.error(f"Error parsing PDF: {e}")
return ""
def parse_pptx(self, file_path: str) -> str:
"""Parse PPTX document"""
try:
prs = Presentation(file_path)
text = ""
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
return text
except Exception as e:
logger.error(f"Error parsing PPTX: {e}")
return ""
def parse_csv(self, file_path: str) -> str:
"""Parse CSV document"""
try:
df = pd.read_csv(file_path)
return df.to_string()
except Exception as e:
logger.error(f"Error parsing CSV: {e}")
return ""
def parse_docx(self, file_path: str) -> str:
"""Parse DOCX document"""
try:
doc = DocxDocument(file_path)
text = ""
for paragraph in doc.paragraphs:
text += paragraph.text + "\n"
return text
except Exception as e:
logger.error(f"Error parsing DOCX: {e}")
return ""
def parse_txt(self, file_path: str) -> str:
"""Parse TXT/Markdown document"""
try:
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
except Exception as e:
logger.error(f"Error parsing TXT: {e}")
return ""
def process_documents(self, message: MCPMessage):
"""Process uploaded documents"""
files = message.payload.get("files", [])
processed_docs = []
for file_path in files:
file_ext = os.path.splitext(file_path)[1].lower()
# Parse document based on file type
if file_ext == '.pdf':
text = self.parse_pdf(file_path)
elif file_ext == '.pptx':
text = self.parse_pptx(file_path)
elif file_ext == '.csv':
text = self.parse_csv(file_path)
elif file_ext == '.docx':
text = self.parse_docx(file_path)
elif file_ext in ['.txt', '.md']:
text = self.parse_txt(file_path)
else:
logger.warning(f"Unsupported file type: {file_ext}")
continue
if text:
# Split text into chunks
chunks = self.text_splitter.split_text(text)
docs = [Document(page_content=chunk, metadata={"source": file_path})
for chunk in chunks]
processed_docs.extend(docs)
# Send processed documents to RetrievalAgent
response = MCPMessage(
sender=self.name,
receiver="RetrievalAgent",
msg_type="INGESTION_COMPLETE",
trace_id=message.trace_id,
payload={"documents": processed_docs}
)
self.message_bus.publish(response)
class RetrievalAgent:
"""Agent responsible for embedding and semantic retrieval"""
def __init__(self, message_bus: MessageBus):
self.name = "RetrievalAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
self.vector_store = None
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "INGESTION_COMPLETE":
self.create_vector_store(message)
elif message.type == "RETRIEVAL_REQUEST":
self.retrieve_context(message)
def create_vector_store(self, message: MCPMessage):
"""Create vector store from processed documents"""
documents = message.payload.get("documents", [])
if documents:
try:
self.vector_store = FAISS.from_documents(documents, embeddings)
logger.info(f"Vector store created with {len(documents)} documents")
# Notify completion
response = MCPMessage(
sender=self.name,
receiver="CoordinatorAgent",
msg_type="VECTORSTORE_READY",
trace_id=message.trace_id,
payload={"status": "ready"}
)
self.message_bus.publish(response)
except Exception as e:
logger.error(f"Error creating vector store: {e}")
def retrieve_context(self, message: MCPMessage):
"""Retrieve relevant context for a query"""
query = message.payload.get("query", "")
k = message.payload.get("k", 3)
if self.vector_store and query:
try:
docs = self.vector_store.similarity_search(query, k=k)
context = [{"content": doc.page_content, "source": doc.metadata.get("source", "")}
for doc in docs]
response = MCPMessage(
sender=self.name,
receiver="LLMResponseAgent",
msg_type="CONTEXT_RESPONSE",
trace_id=message.trace_id,
payload={
"query": query,
"retrieved_context": context,
"top_chunks": [doc.page_content for doc in docs]
}
)
self.message_bus.publish(response)
except Exception as e:
logger.error(f"Error retrieving context: {e}")
class LLMResponseAgent:
"""Agent responsible for generating LLM responses"""
def __init__(self, message_bus: MessageBus):
self.name = "LLMResponseAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "CONTEXT_RESPONSE":
self.generate_response(message)
def generate_response(self, message: MCPMessage):
"""Generate response using retrieved context"""
query = message.payload.get("query", "")
context = message.payload.get("retrieved_context", [])
# Build context string
context_text = "\n\n".join([f"Source: {ctx['source']}\nContent: {ctx['content']}"
for ctx in context])
# Create messages for conversational format
messages = [
{
"role": "system",
"content": "You are a helpful assistant. Based on the provided context below, answer the user's question accurately and comprehensively. Cite the sources if possible.",
},
{
"role": "user",
"content": f"Context:\n\n{context_text}\n\nQuestion: {query}"
}
]
try:
# Use client.chat_completion for conversational models
response_stream = client.chat_completion(
messages=messages,
max_tokens=512,
temperature=0.7,
stream=True
)
# Send streaming response
response = MCPMessage(
sender=self.name,
receiver="CoordinatorAgent",
msg_type="LLM_RESPONSE_STREAM",
trace_id=message.trace_id,
payload={
"query": query,
"response_stream": response_stream,
"context": context
}
)
self.message_bus.publish(response)
except Exception as e:
logger.error(f"Error generating response: {e}")
# Send an error stream back
error_msg = f"Error from LLM: {e}"
def error_generator():
yield error_msg
response = MCPMessage(
sender=self.name,
receiver="CoordinatorAgent",
msg_type="LLM_RESPONSE_STREAM",
trace_id=message.trace_id,
payload={"response_stream": error_generator()}
)
self.message_bus.publish(response)
class CoordinatorAgent:
"""Coordinator agent that orchestrates the entire workflow"""
def __init__(self, message_bus: MessageBus):
self.name = "CoordinatorAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
self.current_response_stream = None
self.vector_store_ready = False
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "VECTORSTORE_READY":
self.vector_store_ready = True
elif message.type == "LLM_RESPONSE_STREAM":
self.current_response_stream = message.payload.get("response_stream")
def process_files(self, files):
"""Process uploaded files"""
if not files:
return "No files uploaded."
file_paths = [file.name for file in files]
# Send ingestion request
message = MCPMessage(
sender=self.name,
receiver="IngestionAgent",
msg_type="INGESTION_REQUEST",
payload={"files": file_paths}
)
self.message_bus.publish(message)
return f"Processing {len(files)} files: {', '.join([os.path.basename(fp) for fp in file_paths])}"
def handle_query(self, query: str, history: List) -> Generator[str, None, None]:
"""Handle user query and return streaming response"""
if not self.vector_store_ready:
yield "Please upload and process documents first."
return
# Send retrieval request
message = MCPMessage(
sender=self.name,
receiver="RetrievalAgent",
msg_type="RETRIEVAL_REQUEST",
payload={"query": query}
)
self.message_bus.publish(message)
# Wait for response and stream
import time
timeout = 20 # seconds
start_time = time.time()
while not self.current_response_stream and (time.time() - start_time) < timeout:
time.sleep(0.1)
if self.current_response_stream:
try:
# Stream tokens directly
for chunk in self.current_response_stream:
# The token is in chunk.choices[0].delta.content for chat_completion
if hasattr(chunk, 'choices') and chunk.choices:
token = chunk.choices[0].delta.content
if token:
yield token
else:
# Fallback for different response format
if hasattr(chunk, 'token'):
yield chunk.token
elif isinstance(chunk, str):
yield chunk
except Exception as e:
yield f"Error streaming response: {e}"
finally:
self.current_response_stream = None # Reset for next query
else:
yield "Timeout: No response received from LLM agent."
# Initialize agents
ingestion_agent = IngestionAgent(message_bus)
retrieval_agent = RetrievalAgent(message_bus)
llm_response_agent = LLMResponseAgent(message_bus)
coordinator_agent = CoordinatorAgent(message_bus)
def create_interface():
"""Create ChatGPT-style Gradio interface"""
with gr.Blocks(
theme=gr.themes.Base(),
css="""
/* Dark theme styling */
.gradio-container {
background-color: #1a1a1a !important;
color: #ffffff !important;
height: 100vh !important;
max-width: none !important;
padding: 0 !important;
}
/* Main container */
.main-container {
display: flex;
flex-direction: column;
height: 100vh;
background: linear-gradient(135deg, #1a1a1a 0%, #2d2d2d 100%);
}
/* Header */
.header {
background: rgba(255, 193, 7, 0.1);
border-bottom: 1px solid rgba(255, 193, 7, 0.2);
padding: 1rem 2rem;
backdrop-filter: blur(10px);
}
.header h1 {
color: #ffc107;
margin: 0;
font-size: 1.5rem;
font-weight: 600;
}
.header p {
color: #cccccc;
margin: 0.25rem 0 0 0;
font-size: 0.9rem;
}
/* Chat area - REDUCED HEIGHT */
.chat-container {
flex: 1;
display: flex;
flex-direction: column;
max-width: 1000px;
margin: 0 auto;
width: 100%;
padding: 1rem;
height: calc(100vh - 200px) !important; /* Reduced height */
}
/* Chatbot styling - SMALLER */
.gradio-chatbot {
height: 300px !important; /* Reduced from 500px */
max-height: 300px !important;
background: transparent !important;
border: none !important;
margin-bottom: 1rem;
overflow-y: auto !important;
box-shadow: 0 0 12px rgba(255, 193, 7, 0.1);
}
/* Input area */
.input-area {
background: rgba(45, 45, 45, 0.6);
border-radius: 16px;
padding: 1rem;
border: 1px solid rgba(255, 193, 7, 0.2);
backdrop-filter: blur(10px);
position: sticky;
bottom: 0;
}
/* File upload */
.upload-area {
background: rgba(255, 193, 7, 0.05);
border: 2px dashed rgba(255, 193, 7, 0.3);
border-radius: 12px;
padding: 1rem;
margin-bottom: 1rem;
transition: all 0.3s ease;
}
/* Buttons - YELLOW SEND BUTTON */
.send-btn {
background: linear-gradient(135deg, #ffc107 0%, #ff8f00 100%) !important;
color: #000000 !important;
border: none !important;
border-radius: 8px !important;
font-weight: 600 !important;
min-height: 40px !important;
}
.primary-btn {
background: linear-gradient(135deg, #ffc107 0%, #ff8f00 100%) !important;
color: #000000 !important;
border: none !important;
border-radius: 8px !important;
font-weight: 600 !important;
}
/* Text inputs */
.gradio-textbox input, .gradio-textbox textarea {
background: rgba(45, 45, 45, 0.8) !important;
color: #ffffff !important;
border: 1px solid rgba(255, 193, 7, 0.2) !important;
border-radius: 8px !important;
}
/* Processing indicator */
.processing-indicator {
background: rgba(255, 193, 7, 0.1);
border: 1px solid rgba(255, 193, 7, 0.3);
border-radius: 8px;
padding: 0.75rem;
margin: 0.5rem 0;
color: #ffc107;
text-align: center;
}
/* Input row styling */
.input-row {
display: flex !important;
gap: 10px !important;
align-items: end !important;
}
/* Message input */
.message-input {
flex: 1 !important;
min-height: 40px !important;
}
""",
title="Agentic RAG Assistant"
) as iface:
# Header
with gr.Row():
with gr.Column():
gr.HTML("""
<div class="header">
<h1>DocAgent-Agentic RAG Assistant</h1>
<p>Upload documents and ask questions - powered by Meta-llama 3.1</p>
</div>
""")
# Main layout with sidebar and chat
with gr.Row():
# Left sidebar for file upload
with gr.Column(scale=1):
gr.Markdown("### πŸ“ Document Upload")
file_upload = gr.File(
file_count="multiple",
file_types=[".pdf", ".pptx", ".csv", ".docx", ".txt", ".md"],
label="Upload Documents",
elem_classes=["upload-area"]
)
processing_status = gr.HTML(visible=False)
process_btn = gr.Button(
"Process Documents",
variant="primary",
elem_classes=["primary-btn"]
)
# gr.Markdown("### ℹ️ Architecture")
# gr.Markdown("""
# **Multi-Agent System:**
# - πŸ“„ **IngestionAgent**: Document parsing
# - πŸ” **RetrievalAgent**: Semantic search
# - πŸ€– **LLMAgent**: Response generation
# - 🎯 **CoordinatorAgent**: Workflow orchestration
# **Features:**
# - Streaming responses
# - Multi-format support
# - Context-aware answers
# """)
# Right side - Chat interface
with gr.Column(scale=2):
gr.Markdown("### πŸ’¬ Chat Interface")
# Chatbot with reduced height
chatbot = gr.Chatbot(
height=300, # Reduced height
elem_classes=["gradio-chatbot"],
show_copy_button=True,
type="messages",
placeholder="Upload documents first, then start chatting!"
)
# Input area with improved layout
with gr.Row(elem_classes=["input-row"]):
msg_input = gr.Textbox(
placeholder="Ask about your documents...",
label="Message",
scale=4,
elem_classes=["message-input"],
show_label=False,
autofocus=True
)
send_btn = gr.Button(
"Send",
scale=1,
elem_classes=["send-btn"],
size="sm"
)
# Examples
gr.Examples(
examples=[
"What are the main topics discussed?",
"Summarize the key findings",
"What metrics are mentioned?",
"What are the recommendations?"
],
inputs=msg_input,
label="Example Questions"
)
# State to track document processing
doc_processed = gr.State(False)
# Event handlers
def handle_file_upload_and_process(files):
if not files:
return gr.update(visible=False), False
# Show processing indicator
processing_html = f"""
<div class="processing-indicator">
πŸ“„ Processing {len(files)} documents... Please wait.
</div>
"""
# Process files
try:
result = coordinator_agent.process_files(files)
# Wait a moment for processing to complete
import time
time.sleep(3)
success_html = """
<div style="background: rgba(76, 175, 80, 0.1); border: 1px solid rgba(76, 175, 80, 0.3);
border-radius: 8px; padding: 0.75rem; color: #4caf50; text-align: center;">
Documents processed successfully! You can now ask questions.
</div>
"""
return gr.update(value=success_html, visible=True), True
except Exception as e:
error_html = f"""
<div style="background: rgba(244, 67, 54, 0.1); border: 1px solid rgba(244, 67, 54, 0.3);
border-radius: 8px; padding: 0.75rem; color: #f44336; text-align: center;">
❌ Error processing documents: {str(e)}
</div>
"""
return gr.update(value=error_html, visible=True), False
def respond(message, history, doc_ready):
if not doc_ready:
# Show error message
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": " Please upload and process documents first."})
return history, ""
if not message.strip():
return history, message
# Add user message
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": ""})
# Stream response
try:
for token in coordinator_agent.handle_query(message, history):
history[-1]["content"] += token
yield history, ""
except Exception as e:
history[-1]["content"] = f"❌ Error: {str(e)}"
yield history, ""
# Event bindings
process_btn.click(
handle_file_upload_and_process,
inputs=[file_upload],
outputs=[processing_status, doc_processed]
)
send_btn.click(
respond,
inputs=[msg_input, chatbot, doc_processed],
outputs=[chatbot, msg_input],
show_progress=True
)
msg_input.submit(
respond,
inputs=[msg_input, chatbot, doc_processed],
outputs=[chatbot, msg_input],
show_progress=True
)
return iface
# Launch the application
if __name__ == "__main__":
demo = create_interface()
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860
)