Spaces:
Sleeping
Sleeping
File size: 26,448 Bytes
1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 620f836 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 4e070e0 02fc469 2ea78e5 1b4bf2d 02fc469 df9085f 02fc469 5391728 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 02fc469 5391728 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 5391728 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 1b4bf2d 02fc469 1b4bf2d 5391728 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 02fc469 5391728 1b4bf2d 5391728 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 02fc469 df9085f 02fc469 5391728 02fc469 1b4bf2d 02fc469 4e070e0 02fc469 1b4bf2d 5391728 02fc469 4e070e0 5391728 02fc469 4e070e0 02fc469 5391728 02fc469 4e070e0 02fc469 4e070e0 02fc469 4e070e0 02fc469 4e070e0 02fc469 4e070e0 1b4bf2d 4e070e0 5391728 4e070e0 02fc469 4e070e0 02fc469 4e070e0 02fc469 1b4bf2d 4e070e0 df9085f 4e070e0 df9085f 4e070e0 df9085f 1b4bf2d 02fc469 5391728 02fc469 4e070e0 02fc469 5391728 02fc469 4e070e0 02fc469 5391728 02fc469 5391728 02fc469 5391728 4e070e0 02fc469 4e070e0 02fc469 4e070e0 02fc469 4e070e0 02fc469 4e070e0 02fc469 4e070e0 02fc469 4e070e0 5391728 4e070e0 1b4bf2d 02fc469 4e070e0 02fc469 1b4bf2d 027da10 c9e1414 02fc469 9994ccc 02fc469 027da10 078a0ee 027da10 c9e1414 027da10 4134b9e 027da10 9994ccc 027da10 c9e1414 02fc469 3398b2c 9994ccc 75947c0 9994ccc 3398b2c 9994ccc 027da10 9994ccc 027da10 c9e1414 9994ccc 027da10 9994ccc 027da10 9994ccc 027da10 9994ccc 027da10 9994ccc 027da10 9994ccc 027da10 9994ccc 027da10 9994ccc 027da10 078a0ee 027da10 9994ccc 027da10 078a0ee 027da10 9994ccc 027da10 9994ccc 027da10 9994ccc 4e070e0 9994ccc c9e1414 078a0ee 027da10 c9e1414 ef02ed3 4134b9e ef02ed3 9994ccc 027da10 ef02ed3 c9e1414 078a0ee c9e1414 9994ccc 027da10 c9e1414 ef02ed3 027da10 ef02ed3 027da10 ef02ed3 c9e1414 ef02ed3 027da10 ef02ed3 027da10 ef02ed3 c9e1414 027da10 ef02ed3 9994ccc ef02ed3 027da10 c9e1414 ef02ed3 4e070e0 027da10 c9e1414 078a0ee 4e070e0 ef02ed3 027da10 4e070e0 027da10 4e070e0 ef02ed3 078a0ee ef02ed3 027da10 1b4bf2d ef02ed3 c9e1414 02fc469 ef02ed3 1b4bf2d ef02ed3 027da10 02fc469 ef02ed3 1b4bf2d 3398b2c 02fc469 027da10 02fc469 1b4bf2d 2fd872a 1b4bf2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 |
import gradio as gr
import os
import json
import uuid
import asyncio
from datetime import datetime
from typing import List, Dict, Any, Optional, Generator
import logging
# Import required libraries
from huggingface_hub import InferenceClient
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.docstore.document import Document
# Import document parsers
import PyPDF2
from pptx import Presentation
import pandas as pd
from docx import Document as DocxDocument
import io
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Get HuggingFace token from environment
HF_TOKEN = os.getenv("hf_token")
if not HF_TOKEN:
raise ValueError("HuggingFace token not found in environment variables")
# Initialize HuggingFace Inference Client
client = InferenceClient(model="meta-llama/Llama-3.1-8B-Instruct", token=HF_TOKEN)
# Initialize embeddings
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
class MCPMessage:
"""Model Context Protocol Message Structure"""
def __init__(self, sender: str, receiver: str, msg_type: str,
trace_id: str = None, payload: Dict = None):
self.sender = sender
self.receiver = receiver
self.type = msg_type
self.trace_id = trace_id or str(uuid.uuid4())
self.payload = payload or {}
self.timestamp = datetime.now().isoformat()
def to_dict(self):
return {
"sender": self.sender,
"receiver": self.receiver,
"type": self.type,
"trace_id": self.trace_id,
"payload": self.payload,
"timestamp": self.timestamp
}
class MessageBus:
"""In-memory message bus for MCP communication"""
def __init__(self):
self.messages = []
self.subscribers = {}
def publish(self, message: MCPMessage):
"""Publish message to the bus"""
self.messages.append(message)
logger.info(f"Message published: {message.sender} -> {message.receiver} [{message.type}]")
# Notify subscribers
if message.receiver in self.subscribers:
for callback in self.subscribers[message.receiver]:
callback(message)
def subscribe(self, agent_name: str, callback):
"""Subscribe agent to receive messages"""
if agent_name not in self.subscribers:
self.subscribers[agent_name] = []
self.subscribers[agent_name].append(callback)
# Global message bus
message_bus = MessageBus()
class IngestionAgent:
"""Agent responsible for document parsing and preprocessing"""
def __init__(self, message_bus: MessageBus):
self.name = "IngestionAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "INGESTION_REQUEST":
self.process_documents(message)
def parse_pdf(self, file_path: str) -> str:
"""Parse PDF document"""
try:
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
except Exception as e:
logger.error(f"Error parsing PDF: {e}")
return ""
def parse_pptx(self, file_path: str) -> str:
"""Parse PPTX document"""
try:
prs = Presentation(file_path)
text = ""
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
return text
except Exception as e:
logger.error(f"Error parsing PPTX: {e}")
return ""
def parse_csv(self, file_path: str) -> str:
"""Parse CSV document"""
try:
df = pd.read_csv(file_path)
return df.to_string()
except Exception as e:
logger.error(f"Error parsing CSV: {e}")
return ""
def parse_docx(self, file_path: str) -> str:
"""Parse DOCX document"""
try:
doc = DocxDocument(file_path)
text = ""
for paragraph in doc.paragraphs:
text += paragraph.text + "\n"
return text
except Exception as e:
logger.error(f"Error parsing DOCX: {e}")
return ""
def parse_txt(self, file_path: str) -> str:
"""Parse TXT/Markdown document"""
try:
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
except Exception as e:
logger.error(f"Error parsing TXT: {e}")
return ""
def process_documents(self, message: MCPMessage):
"""Process uploaded documents"""
files = message.payload.get("files", [])
processed_docs = []
for file_path in files:
file_ext = os.path.splitext(file_path)[1].lower()
# Parse document based on file type
if file_ext == '.pdf':
text = self.parse_pdf(file_path)
elif file_ext == '.pptx':
text = self.parse_pptx(file_path)
elif file_ext == '.csv':
text = self.parse_csv(file_path)
elif file_ext == '.docx':
text = self.parse_docx(file_path)
elif file_ext in ['.txt', '.md']:
text = self.parse_txt(file_path)
else:
logger.warning(f"Unsupported file type: {file_ext}")
continue
if text:
# Split text into chunks
chunks = self.text_splitter.split_text(text)
docs = [Document(page_content=chunk, metadata={"source": file_path})
for chunk in chunks]
processed_docs.extend(docs)
# Send processed documents to RetrievalAgent
response = MCPMessage(
sender=self.name,
receiver="RetrievalAgent",
msg_type="INGESTION_COMPLETE",
trace_id=message.trace_id,
payload={"documents": processed_docs}
)
self.message_bus.publish(response)
class RetrievalAgent:
"""Agent responsible for embedding and semantic retrieval"""
def __init__(self, message_bus: MessageBus):
self.name = "RetrievalAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
self.vector_store = None
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "INGESTION_COMPLETE":
self.create_vector_store(message)
elif message.type == "RETRIEVAL_REQUEST":
self.retrieve_context(message)
def create_vector_store(self, message: MCPMessage):
"""Create vector store from processed documents"""
documents = message.payload.get("documents", [])
if documents:
try:
self.vector_store = FAISS.from_documents(documents, embeddings)
logger.info(f"Vector store created with {len(documents)} documents")
# Notify completion
response = MCPMessage(
sender=self.name,
receiver="CoordinatorAgent",
msg_type="VECTORSTORE_READY",
trace_id=message.trace_id,
payload={"status": "ready"}
)
self.message_bus.publish(response)
except Exception as e:
logger.error(f"Error creating vector store: {e}")
def retrieve_context(self, message: MCPMessage):
"""Retrieve relevant context for a query"""
query = message.payload.get("query", "")
k = message.payload.get("k", 3)
if self.vector_store and query:
try:
docs = self.vector_store.similarity_search(query, k=k)
context = [{"content": doc.page_content, "source": doc.metadata.get("source", "")}
for doc in docs]
response = MCPMessage(
sender=self.name,
receiver="LLMResponseAgent",
msg_type="CONTEXT_RESPONSE",
trace_id=message.trace_id,
payload={
"query": query,
"retrieved_context": context,
"top_chunks": [doc.page_content for doc in docs]
}
)
self.message_bus.publish(response)
except Exception as e:
logger.error(f"Error retrieving context: {e}")
class LLMResponseAgent:
"""Agent responsible for generating LLM responses"""
def __init__(self, message_bus: MessageBus):
self.name = "LLMResponseAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "CONTEXT_RESPONSE":
self.generate_response(message)
def generate_response(self, message: MCPMessage):
"""Generate response using retrieved context"""
query = message.payload.get("query", "")
context = message.payload.get("retrieved_context", [])
# Build context string
context_text = "\n\n".join([f"Source: {ctx['source']}\nContent: {ctx['content']}"
for ctx in context])
# Create messages for conversational format
messages = [
{
"role": "system",
"content": "You are a helpful assistant. Based on the provided context below, answer the user's question accurately and comprehensively. Cite the sources if possible.",
},
{
"role": "user",
"content": f"Context:\n\n{context_text}\n\nQuestion: {query}"
}
]
try:
# Use client.chat_completion for conversational models
response_stream = client.chat_completion(
messages=messages,
max_tokens=512,
temperature=0.7,
stream=True
)
# Send streaming response
response = MCPMessage(
sender=self.name,
receiver="CoordinatorAgent",
msg_type="LLM_RESPONSE_STREAM",
trace_id=message.trace_id,
payload={
"query": query,
"response_stream": response_stream,
"context": context
}
)
self.message_bus.publish(response)
except Exception as e:
logger.error(f"Error generating response: {e}")
# Send an error stream back
error_msg = f"Error from LLM: {e}"
def error_generator():
yield error_msg
response = MCPMessage(
sender=self.name,
receiver="CoordinatorAgent",
msg_type="LLM_RESPONSE_STREAM",
trace_id=message.trace_id,
payload={"response_stream": error_generator()}
)
self.message_bus.publish(response)
class CoordinatorAgent:
"""Coordinator agent that orchestrates the entire workflow"""
def __init__(self, message_bus: MessageBus):
self.name = "CoordinatorAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
self.current_response_stream = None
self.vector_store_ready = False
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "VECTORSTORE_READY":
self.vector_store_ready = True
elif message.type == "LLM_RESPONSE_STREAM":
self.current_response_stream = message.payload.get("response_stream")
def process_files(self, files):
"""Process uploaded files"""
if not files:
return "No files uploaded."
file_paths = [file.name for file in files]
# Send ingestion request
message = MCPMessage(
sender=self.name,
receiver="IngestionAgent",
msg_type="INGESTION_REQUEST",
payload={"files": file_paths}
)
self.message_bus.publish(message)
return f"Processing {len(files)} files: {', '.join([os.path.basename(fp) for fp in file_paths])}"
def handle_query(self, query: str, history: List) -> Generator[str, None, None]:
"""Handle user query and return streaming response"""
if not self.vector_store_ready:
yield "Please upload and process documents first."
return
# Send retrieval request
message = MCPMessage(
sender=self.name,
receiver="RetrievalAgent",
msg_type="RETRIEVAL_REQUEST",
payload={"query": query}
)
self.message_bus.publish(message)
# Wait for response and stream
import time
timeout = 20 # seconds
start_time = time.time()
while not self.current_response_stream and (time.time() - start_time) < timeout:
time.sleep(0.1)
if self.current_response_stream:
try:
# Stream tokens directly
for chunk in self.current_response_stream:
# The token is in chunk.choices[0].delta.content for chat_completion
if hasattr(chunk, 'choices') and chunk.choices:
token = chunk.choices[0].delta.content
if token:
yield token
else:
# Fallback for different response format
if hasattr(chunk, 'token'):
yield chunk.token
elif isinstance(chunk, str):
yield chunk
except Exception as e:
yield f"Error streaming response: {e}"
finally:
self.current_response_stream = None # Reset for next query
else:
yield "Timeout: No response received from LLM agent."
# Initialize agents
ingestion_agent = IngestionAgent(message_bus)
retrieval_agent = RetrievalAgent(message_bus)
llm_response_agent = LLMResponseAgent(message_bus)
coordinator_agent = CoordinatorAgent(message_bus)
def create_interface():
"""Create ChatGPT-style Gradio interface"""
with gr.Blocks(
theme=gr.themes.Base(),
css="""
/* Dark theme styling */
.gradio-container {
background-color: #1a1a1a !important;
color: #ffffff !important;
height: 100vh !important;
max-width: none !important;
padding: 0 !important;
}
/* Main container */
.main-container {
display: flex;
flex-direction: column;
height: 100vh;
background: linear-gradient(135deg, #1a1a1a 0%, #2d2d2d 100%);
}
/* Header */
.header {
background: rgba(255, 193, 7, 0.1);
border-bottom: 1px solid rgba(255, 193, 7, 0.2);
padding: 1rem 2rem;
backdrop-filter: blur(10px);
}
.header h1 {
color: #ffc107;
margin: 0;
font-size: 1.5rem;
font-weight: 600;
}
.header p {
color: #cccccc;
margin: 0.25rem 0 0 0;
font-size: 0.9rem;
}
/* Chat area - REDUCED HEIGHT */
.chat-container {
flex: 1;
display: flex;
flex-direction: column;
max-width: 1000px;
margin: 0 auto;
width: 100%;
padding: 1rem;
height: calc(100vh - 200px) !important; /* Reduced height */
}
/* Chatbot styling - SMALLER */
.gradio-chatbot {
height: 300px !important; /* Reduced from 500px */
max-height: 300px !important;
background: transparent !important;
border: none !important;
margin-bottom: 1rem;
overflow-y: auto !important;
box-shadow: 0 0 12px rgba(255, 193, 7, 0.1);
}
/* Input area */
.input-area {
background: rgba(45, 45, 45, 0.6);
border-radius: 16px;
padding: 1rem;
border: 1px solid rgba(255, 193, 7, 0.2);
backdrop-filter: blur(10px);
position: sticky;
bottom: 0;
}
/* File upload */
.upload-area {
background: rgba(255, 193, 7, 0.05);
border: 2px dashed rgba(255, 193, 7, 0.3);
border-radius: 12px;
padding: 1rem;
margin-bottom: 1rem;
transition: all 0.3s ease;
}
/* Buttons - YELLOW SEND BUTTON */
.send-btn {
background: linear-gradient(135deg, #ffc107 0%, #ff8f00 100%) !important;
color: #000000 !important;
border: none !important;
border-radius: 8px !important;
font-weight: 600 !important;
min-height: 40px !important;
}
.primary-btn {
background: linear-gradient(135deg, #ffc107 0%, #ff8f00 100%) !important;
color: #000000 !important;
border: none !important;
border-radius: 8px !important;
font-weight: 600 !important;
}
/* Text inputs */
.gradio-textbox input, .gradio-textbox textarea {
background: rgba(45, 45, 45, 0.8) !important;
color: #ffffff !important;
border: 1px solid rgba(255, 193, 7, 0.2) !important;
border-radius: 8px !important;
}
/* Processing indicator */
.processing-indicator {
background: rgba(255, 193, 7, 0.1);
border: 1px solid rgba(255, 193, 7, 0.3);
border-radius: 8px;
padding: 0.75rem;
margin: 0.5rem 0;
color: #ffc107;
text-align: center;
}
/* Input row styling */
.input-row {
display: flex !important;
gap: 10px !important;
align-items: end !important;
}
/* Message input */
.message-input {
flex: 1 !important;
min-height: 40px !important;
}
""",
title="Agentic RAG Assistant"
) as iface:
# Header
with gr.Row():
with gr.Column():
gr.HTML("""
<div class="header">
<h1>DocAgent-Agentic RAG Assistant</h1>
<p>Upload documents and ask questions - powered by Meta-llama 3.1</p>
</div>
""")
# Main layout with sidebar and chat
with gr.Row():
# Left sidebar for file upload
with gr.Column(scale=1):
gr.Markdown("### π Document Upload")
file_upload = gr.File(
file_count="multiple",
file_types=[".pdf", ".pptx", ".csv", ".docx", ".txt", ".md"],
label="Upload Documents",
elem_classes=["upload-area"]
)
processing_status = gr.HTML(visible=False)
process_btn = gr.Button(
"Process Documents",
variant="primary",
elem_classes=["primary-btn"]
)
# gr.Markdown("### βΉοΈ Architecture")
# gr.Markdown("""
# **Multi-Agent System:**
# - π **IngestionAgent**: Document parsing
# - π **RetrievalAgent**: Semantic search
# - π€ **LLMAgent**: Response generation
# - π― **CoordinatorAgent**: Workflow orchestration
# **Features:**
# - Streaming responses
# - Multi-format support
# - Context-aware answers
# """)
# Right side - Chat interface
with gr.Column(scale=2):
gr.Markdown("### π¬ Chat Interface")
# Chatbot with reduced height
chatbot = gr.Chatbot(
height=300, # Reduced height
elem_classes=["gradio-chatbot"],
show_copy_button=True,
type="messages",
placeholder="Upload documents first, then start chatting!"
)
# Input area with improved layout
with gr.Row(elem_classes=["input-row"]):
msg_input = gr.Textbox(
placeholder="Ask about your documents...",
label="Message",
scale=4,
elem_classes=["message-input"],
show_label=False,
autofocus=True
)
send_btn = gr.Button(
"Send",
scale=1,
elem_classes=["send-btn"],
size="sm"
)
# Examples
gr.Examples(
examples=[
"What are the main topics discussed?",
"Summarize the key findings",
"What metrics are mentioned?",
"What are the recommendations?"
],
inputs=msg_input,
label="Example Questions"
)
# State to track document processing
doc_processed = gr.State(False)
# Event handlers
def handle_file_upload_and_process(files):
if not files:
return gr.update(visible=False), False
# Show processing indicator
processing_html = f"""
<div class="processing-indicator">
π Processing {len(files)} documents... Please wait.
</div>
"""
# Process files
try:
result = coordinator_agent.process_files(files)
# Wait a moment for processing to complete
import time
time.sleep(3)
success_html = """
<div style="background: rgba(76, 175, 80, 0.1); border: 1px solid rgba(76, 175, 80, 0.3);
border-radius: 8px; padding: 0.75rem; color: #4caf50; text-align: center;">
Documents processed successfully! You can now ask questions.
</div>
"""
return gr.update(value=success_html, visible=True), True
except Exception as e:
error_html = f"""
<div style="background: rgba(244, 67, 54, 0.1); border: 1px solid rgba(244, 67, 54, 0.3);
border-radius: 8px; padding: 0.75rem; color: #f44336; text-align: center;">
β Error processing documents: {str(e)}
</div>
"""
return gr.update(value=error_html, visible=True), False
def respond(message, history, doc_ready):
if not doc_ready:
# Show error message
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": " Please upload and process documents first."})
return history, ""
if not message.strip():
return history, message
# Add user message
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": ""})
# Stream response
try:
for token in coordinator_agent.handle_query(message, history):
history[-1]["content"] += token
yield history, ""
except Exception as e:
history[-1]["content"] = f"β Error: {str(e)}"
yield history, ""
# Event bindings
process_btn.click(
handle_file_upload_and_process,
inputs=[file_upload],
outputs=[processing_status, doc_processed]
)
send_btn.click(
respond,
inputs=[msg_input, chatbot, doc_processed],
outputs=[chatbot, msg_input],
show_progress=True
)
msg_input.submit(
respond,
inputs=[msg_input, chatbot, doc_processed],
outputs=[chatbot, msg_input],
show_progress=True
)
return iface
# Launch the application
if __name__ == "__main__":
demo = create_interface()
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860
) |