DocAgent / app.py
ragunath-ravi's picture
Update app.py
432cda5 verified
raw
history blame
41.9 kB
import gradio as gr
import os
import json
import uuid
import asyncio
from datetime import datetime
from typing import List, Dict, Any, Optional, Generator
import logging
# Import required libraries
from huggingface_hub import InferenceClient
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.docstore.document import Document
# Import document parsers
import PyPDF2
from pptx import Presentation
import pandas as pd
from docx import Document as DocxDocument
import io
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Get HuggingFace token from environment
HF_TOKEN = os.getenv("hf_token")
if not HF_TOKEN:
raise ValueError("HuggingFace token not found in environment variables")
# Initialize HuggingFace Inference Client
client = InferenceClient(model="meta-llama/Llama-3.1-8B-Instruct", token=HF_TOKEN)
# Initialize embeddings
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
class MCPMessage:
"""Model Context Protocol Message Structure"""
def __init__(self, sender: str, receiver: str, msg_type: str,
trace_id: str = None, payload: Dict = None):
self.sender = sender
self.receiver = receiver
self.type = msg_type
self.trace_id = trace_id or str(uuid.uuid4())
self.payload = payload or {}
self.timestamp = datetime.now().isoformat()
def to_dict(self):
return {
"sender": self.sender,
"receiver": self.receiver,
"type": self.type,
"trace_id": self.trace_id,
"payload": self.payload,
"timestamp": self.timestamp
}
class MessageBus:
"""In-memory message bus for MCP communication"""
def __init__(self):
self.messages = []
self.subscribers = {}
def publish(self, message: MCPMessage):
"""Publish message to the bus"""
self.messages.append(message)
logger.info(f"Message published: {message.sender} -> {message.receiver} [{message.type}]")
# Notify subscribers
if message.receiver in self.subscribers:
for callback in self.subscribers[message.receiver]:
callback(message)
def subscribe(self, agent_name: str, callback):
"""Subscribe agent to receive messages"""
if agent_name not in self.subscribers:
self.subscribers[agent_name] = []
self.subscribers[agent_name].append(callback)
# Global message bus
message_bus = MessageBus()
class IngestionAgent:
"""Agent responsible for document parsing and preprocessing"""
def __init__(self, message_bus: MessageBus):
self.name = "IngestionAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "INGESTION_REQUEST":
self.process_documents(message)
def parse_pdf(self, file_path: str) -> str:
"""Parse PDF document"""
try:
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
except Exception as e:
logger.error(f"Error parsing PDF: {e}")
return ""
def parse_pptx(self, file_path: str) -> str:
"""Parse PPTX document"""
try:
prs = Presentation(file_path)
text = ""
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
return text
except Exception as e:
logger.error(f"Error parsing PPTX: {e}")
return ""
def parse_csv(self, file_path: str) -> str:
"""Parse CSV document"""
try:
df = pd.read_csv(file_path)
return df.to_string()
except Exception as e:
logger.error(f"Error parsing CSV: {e}")
return ""
def parse_docx(self, file_path: str) -> str:
"""Parse DOCX document"""
try:
doc = DocxDocument(file_path)
text = ""
for paragraph in doc.paragraphs:
text += paragraph.text + "\n"
return text
except Exception as e:
logger.error(f"Error parsing DOCX: {e}")
return ""
def parse_txt(self, file_path: str) -> str:
"""Parse TXT/Markdown document"""
try:
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
except Exception as e:
logger.error(f"Error parsing TXT: {e}")
return ""
def process_documents(self, message: MCPMessage):
"""Process uploaded documents"""
files = message.payload.get("files", [])
processed_docs = []
for file_path in files:
file_ext = os.path.splitext(file_path)[1].lower()
# Parse document based on file type
if file_ext == '.pdf':
text = self.parse_pdf(file_path)
elif file_ext == '.pptx':
text = self.parse_pptx(file_path)
elif file_ext == '.csv':
text = self.parse_csv(file_path)
elif file_ext == '.docx':
text = self.parse_docx(file_path)
elif file_ext in ['.txt', '.md']:
text = self.parse_txt(file_path)
else:
logger.warning(f"Unsupported file type: {file_ext}")
continue
if text:
# Split text into chunks
chunks = self.text_splitter.split_text(text)
docs = [Document(page_content=chunk, metadata={"source": file_path})
for chunk in chunks]
processed_docs.extend(docs)
# Send processed documents to RetrievalAgent
response = MCPMessage(
sender=self.name,
receiver="RetrievalAgent",
msg_type="INGESTION_COMPLETE",
trace_id=message.trace_id,
payload={"documents": processed_docs}
)
self.message_bus.publish(response)
class RetrievalAgent:
"""Agent responsible for embedding and semantic retrieval"""
def __init__(self, message_bus: MessageBus):
self.name = "RetrievalAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
self.vector_store = None
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "INGESTION_COMPLETE":
self.create_vector_store(message)
elif message.type == "RETRIEVAL_REQUEST":
self.retrieve_context(message)
def create_vector_store(self, message: MCPMessage):
"""Create vector store from processed documents"""
documents = message.payload.get("documents", [])
if documents:
try:
self.vector_store = FAISS.from_documents(documents, embeddings)
logger.info(f"Vector store created with {len(documents)} documents")
# Notify completion
response = MCPMessage(
sender=self.name,
receiver="CoordinatorAgent",
msg_type="VECTORSTORE_READY",
trace_id=message.trace_id,
payload={"status": "ready"}
)
self.message_bus.publish(response)
except Exception as e:
logger.error(f"Error creating vector store: {e}")
def retrieve_context(self, message: MCPMessage):
"""Retrieve relevant context for a query"""
query = message.payload.get("query", "")
k = message.payload.get("k", 3)
if self.vector_store and query:
try:
docs = self.vector_store.similarity_search(query, k=k)
context = [{"content": doc.page_content, "source": doc.metadata.get("source", "")}
for doc in docs]
response = MCPMessage(
sender=self.name,
receiver="LLMResponseAgent",
msg_type="CONTEXT_RESPONSE",
trace_id=message.trace_id,
payload={
"query": query,
"retrieved_context": context,
"top_chunks": [doc.page_content for doc in docs]
}
)
self.message_bus.publish(response)
except Exception as e:
logger.error(f"Error retrieving context: {e}")
class LLMResponseAgent:
"""Agent responsible for generating LLM responses"""
def __init__(self, message_bus: MessageBus):
self.name = "LLMResponseAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "CONTEXT_RESPONSE":
self.generate_response(message)
def generate_response(self, message: MCPMessage):
"""Generate response using retrieved context"""
query = message.payload.get("query", "")
context = message.payload.get("retrieved_context", [])
# Build context string
context_text = "\n\n".join([f"Source: {ctx['source']}\nContent: {ctx['content']}"
for ctx in context])
# Create messages for conversational format
messages = [
{
"role": "system",
"content": "You are a helpful assistant. Based on the provided context below, answer the user's question accurately and comprehensively. Cite the sources if possible.",
},
{
"role": "user",
"content": f"Context:\n\n{context_text}\n\nQuestion: {query}"
}
]
try:
# Use client.chat_completion for conversational models
response_stream = client.chat_completion(
messages=messages,
max_tokens=512,
temperature=0.7,
stream=True
)
# Send streaming response
response = MCPMessage(
sender=self.name,
receiver="CoordinatorAgent",
msg_type="LLM_RESPONSE_STREAM",
trace_id=message.trace_id,
payload={
"query": query,
"response_stream": response_stream,
"context": context
}
)
self.message_bus.publish(response)
except Exception as e:
logger.error(f"Error generating response: {e}")
# Send an error stream back
error_msg = f"Error from LLM: {e}"
def error_generator():
yield error_msg
response = MCPMessage(
sender=self.name,
receiver="CoordinatorAgent",
msg_type="LLM_RESPONSE_STREAM",
trace_id=message.trace_id,
payload={"response_stream": error_generator()}
)
self.message_bus.publish(response)
class CoordinatorAgent:
"""Coordinator agent that orchestrates the entire workflow"""
def __init__(self, message_bus: MessageBus):
self.name = "CoordinatorAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
self.current_response_stream = None
self.vector_store_ready = False
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "VECTORSTORE_READY":
self.vector_store_ready = True
elif message.type == "LLM_RESPONSE_STREAM":
self.current_response_stream = message.payload.get("response_stream")
def process_files(self, files):
"""Process uploaded files"""
if not files:
return "No files uploaded."
file_paths = [file.name for file in files]
# Send ingestion request
message = MCPMessage(
sender=self.name,
receiver="IngestionAgent",
msg_type="INGESTION_REQUEST",
payload={"files": file_paths}
)
self.message_bus.publish(message)
return f"Processing {len(files)} files: {', '.join([os.path.basename(fp) for fp in file_paths])}"
def handle_query(self, query: str, history: List) -> Generator[str, None, None]:
"""Handle user query and return streaming response"""
if not self.vector_store_ready:
yield "Please upload and process documents first."
return
# Send retrieval request
message = MCPMessage(
sender=self.name,
receiver="RetrievalAgent",
msg_type="RETRIEVAL_REQUEST",
payload={"query": query}
)
self.message_bus.publish(message)
# Wait for response and stream
import time
timeout = 20 # seconds
start_time = time.time()
while not self.current_response_stream and (time.time() - start_time) < timeout:
time.sleep(0.1)
if self.current_response_stream:
try:
# Stream tokens directly
for chunk in self.current_response_stream:
# The token is in chunk.choices[0].delta.content for chat_completion
if hasattr(chunk, 'choices') and chunk.choices:
token = chunk.choices[0].delta.content
if token:
yield token
else:
# Fallback for different response format
if hasattr(chunk, 'token'):
yield chunk.token
elif isinstance(chunk, str):
yield chunk
except Exception as e:
yield f"Error streaming response: {e}"
finally:
self.current_response_stream = None # Reset for next query
else:
yield "Timeout: No response received from LLM agent."
# Initialize agents
ingestion_agent = IngestionAgent(message_bus)
retrieval_agent = RetrievalAgent(message_bus)
llm_response_agent = LLMResponseAgent(message_bus)
coordinator_agent = CoordinatorAgent(message_bus)
def create_interface():
"""Create enhanced ChatGPT-style Gradio interface with glowing effects"""
with gr.Blocks(
theme=gr.themes.Base(),
css="""
/* Import Google Fonts for better typography */
[cite_start]@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap'); [cite: 52]
/* Dark theme styling with enhanced visuals */
.gradio-container {
[cite_start]background: linear-gradient(135deg, #0a0a0a 0%, #1a1a2e 50%, #16213e 100%) !important; [cite: 52]
color: #ffffff !important; [cite_start]/* Ensure base text color is bright */ [cite: 53]
[cite_start]height: 100vh !important; [cite: 53]
[cite_start]max-width: none !important; [cite: 54]
[cite_start]padding: 0 !important; [cite: 54]
[cite_start]font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important; [cite: 55]
}
/* Main container with animated background */
.main-container {
[cite_start]display: flex; [cite: 56]
[cite_start]flex-direction: column; [cite: 56]
[cite_start]height: 100vh; [cite: 56]
background:
radial-gradient(circle at 20% 50%, rgba(255, 193, 7, 0.05) 0%, transparent 50%),
radial-gradient(circle at 80% 20%, rgba(0, 123, 255, 0.05) 0%, transparent 50%),
radial-gradient(circle at 40% 80%, rgba(255, 87, 34, 0.03) 0%, transparent 50%),
[cite_start]linear-gradient(135deg, #0a0a0a 0%, #1a1a2e 50%, #16213e 100%); [cite: 56]
[cite_start]animation: backgroundShift 15s ease-in-out infinite alternate; [cite: 57]
}
@keyframes backgroundShift {
[cite_start]0% { filter: hue-rotate(0deg); [cite: 58] }
[cite_start]100% { filter: hue-rotate(10deg); [cite: 59] }
}
/* Enhanced Header with glow */
.header {
[cite_start]background: rgba(255, 193, 7, 0.08); [cite: 60]
[cite_start]border-bottom: 2px solid transparent; [cite: 60]
[cite_start]border-image: linear-gradient(90deg, rgba(255, 193, 7, 0.5), rgba(0, 123, 255, 0.3)) 1; [cite: 60]
[cite_start]padding: 1.5rem 2rem; [cite: 60]
[cite_start]backdrop-filter: blur(20px); [cite: 61]
box-shadow:
0 4px 20px rgba(255, 193, 7, 0.1),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.1); [cite: 61]
[cite_start]position: relative; [cite: 62]
[cite_start]overflow: hidden; [cite: 62]
}
.header::before {
[cite_start]content: ''; [cite: 63]
[cite_start]position: absolute; [cite: 63]
[cite_start]top: 0; [cite: 63]
[cite_start]left: -100%; [cite: 63]
[cite_start]width: 100%; [cite: 63]
[cite_start]height: 100%; [cite: 63]
[cite_start]background: linear-gradient(90deg, transparent, rgba(255, 193, 7, 0.1), transparent); [cite: 63]
[cite_start]animation: shimmer 3s ease-in-out infinite; [cite: 64]
}
@keyframes shimmer {
[cite_start]0% { left: -100%; [cite: 65] }
[cite_start]100% { left: 100%; [cite: 66] }
}
.header h1 {
[cite_start]color: #ffc107; [cite: 67]
[cite_start]margin: 0; [cite: 67]
[cite_start]font-size: 2rem; [cite: 67]
[cite_start]font-weight: 700; [cite: 67]
text-shadow:
0 0 10px rgba(255, 193, 7, 0.3),
[cite_start]0 0 20px rgba(255, 193, 7, 0.2); [cite: 67]
[cite_start]letter-spacing: -0.02em; [cite: 68]
}
.header p {
color: #ffffff; [cite_start]/* UPDATED from #e0e0e0 */ [cite: 69]
[cite_start]margin: 0.5rem 0 0 0; [cite: 69]
[cite_start]font-size: 1rem; [cite: 69]
[cite_start]font-weight: 400; [cite: 69]
[cite_start]opacity: 0.9; [cite: 70]
}
/* Enhanced Chat container */
.chat-container {
[cite_start]flex: 1; [cite: 71]
[cite_start]display: flex; [cite: 71]
[cite_start]flex-direction: column; [cite: 71]
[cite_start]max-width: 1200px; [cite: 71]
[cite_start]margin: 0 auto; [cite: 71]
[cite_start]width: 100%; [cite: 71]
[cite_start]padding: 2rem; [cite: 71]
[cite_start]height: calc(100vh - 200px) !important; [cite: 71]
[cite_start]gap: 1.5rem; [cite: 72]
}
/* Enhanced Chatbot with glow effect */
.gradio-chatbot {
[cite_start]height: 400px !important; [cite: 73]
[cite_start]max-height: 400px !important; [cite: 73]
[cite_start]background: rgba(45, 45, 45, 0.4) !important; [cite: 73]
[cite_start]border: 2px solid rgba(255, 193, 7, 0.2) !important; [cite: 73]
[cite_start]border-radius: 20px !important; [cite: 74]
[cite_start]margin-bottom: 1rem; [cite: 74]
[cite_start]overflow-y: auto !important; [cite: 74]
box-shadow:
0 0 30px rgba(255, 193, 7, 0.15),
0 8px 32px rgba(0, 0, 0, 0.3),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.05) !important; [cite: 74]
[cite_start]backdrop-filter: blur(20px) !important; [cite: 75]
[cite_start]position: relative; [cite: 75]
[cite_start]animation: chatGlow 4s ease-in-out infinite alternate; [cite: 76]
}
@keyframes chatGlow {
0% {
box-shadow:
0 0 30px rgba(255, 193, 7, 0.15),
0 8px 32px rgba(0, 0, 0, 0.3),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.05); [cite: 77]
}
100% {
box-shadow:
0 0 40px rgba(255, 193, 7, 0.25),
0 12px 40px rgba(0, 0, 0, 0.4),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.08); [cite: 78]
}
}
/* Enhanced chat messages */
.message {
[cite_start]background: rgba(255, 255, 255, 0.05) !important; [cite: 79]
[cite_start]border-radius: 16px !important; [cite: 79]
[cite_start]padding: 1rem 1.5rem !important; [cite: 79]
[cite_start]margin: 0.75rem 0 !important; [cite: 79]
[cite_start]border: 1px solid rgba(255, 255, 255, 0.1) !important; [cite: 80]
[cite_start]backdrop-filter: blur(10px) !important; [cite: 80]
[cite_start]font-size: 0.95rem !important; [cite: 80]
[cite_start]line-height: 1.6 !important; [cite: 80]
[cite_start]box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1) !important; [cite: 81]
[cite_start]transition: all 0.3s ease !important; [cite: 81]
color: #ffffff !important; [cite_start]/* Made brighter for all messages */ [cite: 81]
}
.message:hover {
[cite_start]transform: translateY(-1px) !important; [cite: 82]
[cite_start]box-shadow: 0 4px 15px rgba(0, 0, 0, 0.15) !important; [cite: 82]
}
/* User message styling */
.message.user {
[cite_start]background: linear-gradient(135deg, rgba(255, 193, 7, 0.1), rgba(255, 193, 7, 0.05)) !important; [cite: 83]
[cite_start]border-color: rgba(255, 193, 7, 0.2) !important; [cite: 83]
[cite_start]margin-left: 15% !important; [cite: 83]
box-shadow:
0 2px 10px rgba(255, 193, 7, 0.1),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.05) !important; [cite: 84]
}
/* Assistant message styling - important for streaming text */
.message.assistant {
[cite_start]background: linear-gradient(135deg, rgba(0, 123, 255, 0.08), rgba(0, 123, 255, 0.04)) !important; [cite: 85]
[cite_start]border-color: rgba(0, 123, 255, 0.2) !important; [cite: 85]
[cite_start]margin-right: 15% !important; [cite: 85]
box-shadow:
0 2px 10px rgba(0, 123, 255, 0.1),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.05) !important; [cite: 86]
color: #ffffff !important; [cite_start]/* Ensures generated text is bright white */ [cite: 86]
}
/* Enhanced Input area with glow */
.input-area {
[cite_start]background: rgba(45, 45, 45, 0.6); [cite: 87]
[cite_start]border-radius: 20px; [cite: 87]
[cite_start]padding: 1.5rem; [cite: 87]
[cite_start]border: 2px solid rgba(255, 193, 7, 0.2); [cite: 87]
[cite_start]backdrop-filter: blur(20px); [cite: 87]
[cite_start]position: sticky; [cite: 87]
[cite_start]bottom: 0; [cite: 88]
box-shadow:
0 0 25px rgba(255, 193, 7, 0.1),
0 8px 32px rgba(0, 0, 0, 0.2),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.05); [cite: 89]
[cite_start]animation: inputGlow 3s ease-in-out infinite alternate; [cite: 89]
}
@keyframes inputGlow {
0% {
box-shadow:
0 0 25px rgba(255, 193, 7, 0.1),
0 8px 32px rgba(0, 0, 0, 0.2),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.05); [cite: 90]
}
100% {
box-shadow:
0 0 35px rgba(255, 193, 7, 0.2),
0 12px 40px rgba(0, 0, 0, 0.3),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.08); [cite: 91]
}
}
/* Enhanced File upload area */
.upload-area {
[cite_start]background: linear-gradient(135deg, rgba(255, 193, 7, 0.08), rgba(255, 193, 7, 0.04)) !important; [cite: 92]
[cite_start]border: 2px dashed rgba(255, 193, 7, 0.4) !important; [cite: 92]
[cite_start]border-radius: 16px !important; [cite: 92]
[cite_start]padding: 1.5rem !important; [cite: 92]
[cite_start]margin-bottom: 1.5rem !important; [cite: 93]
[cite_start]transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1) !important; [cite: 93]
[cite_start]backdrop-filter: blur(10px) !important; [cite: 94]
box-shadow:
0 0 20px rgba(255, 193, 7, 0.05),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.05) !important; [cite: 95]
}
.upload-area:hover {
[cite_start]background: linear-gradient(135deg, rgba(255, 193, 7, 0.12), rgba(255, 193, 7, 0.06)) !important; [cite: 96]
[cite_start]border-color: rgba(255, 193, 7, 0.6) !important; [cite: 96]
box-shadow:
0 0 30px rgba(255, 193, 7, 0.15),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.08) !important; [cite: 97]
[cite_start]transform: translateY(-2px) !important; [cite: 97]
}
/* Sidebar styling */
.sidebar {
[cite_start]background: rgba(30, 30, 30, 0.6) !important; [cite: 98]
[cite_start]border-right: 2px solid rgba(255, 193, 7, 0.1) !important; [cite: 98]
[cite_start]backdrop-filter: blur(15px) !important; [cite: 99]
box-shadow:
inset -1px 0 0 rgba(255, 255, 255, 0.05),
[cite_start]4px 0 20px rgba(0, 0, 0, 0.1) !important; [cite: 100]
}
/* Enhanced buttons with glow effects */
.send-btn {
[cite_start]background: linear-gradient(135deg, #ffc107 0%, #ff8f00 100%) !important; [cite: 101]
[cite_start]color: #000000 !important; [cite: 101]
[cite_start]border: none !important; [cite: 101]
[cite_start]border-radius: 12px !important; [cite: 101]
[cite_start]font-weight: 600 !important; [cite: 101]
[cite_start]min-height: 48px !important; [cite: 101]
[cite_start]font-size: 0.95rem !important; [cite: 102]
[cite_start]transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important; [cite: 102]
box-shadow:
0 4px 15px rgba(255, 193, 7, 0.3),
[cite_start]0 0 20px rgba(255, 193, 7, 0.2) !important; [cite: 103]
[cite_start]position: relative; [cite: 103]
[cite_start]overflow: hidden; [cite: 103]
}
.send-btn::before {
[cite_start]content: ''; [cite: 104]
[cite_start]position: absolute; [cite: 104]
[cite_start]top: 0; [cite: 104]
[cite_start]left: -100%; [cite: 104]
[cite_start]width: 100%; [cite: 104]
[cite_start]height: 100%; [cite: 104]
[cite_start]background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent); [cite: 105]
[cite_start]transition: left 0.5s; [cite: 105]
}
.send-btn:hover::before {
[cite_start]left: 100%; [cite: 106]
}
.send-btn:hover {
[cite_start]transform: translateY(-2px) !important; [cite: 107]
box-shadow:
0 8px 25px rgba(255, 193, 7, 0.4),
[cite_start]0 0 30px rgba(255, 193, 7, 0.3) !important; [cite: 108]
}
.primary-btn {
[cite_start]background: linear-gradient(135deg, #ffc107 0%, #ff8f00 100%) !important; [cite: 109]
[cite_start]color: #000000 !important; [cite: 109]
[cite_start]border: none !important; [cite: 109]
[cite_start]border-radius: 12px !important; [cite: 109]
[cite_start]font-weight: 600 !important; [cite: 109]
[cite_start]padding: 0.75rem 1.5rem !important; [cite: 109]
[cite_start]font-size: 0.95rem !important; [cite: 110]
[cite_start]transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important; [cite: 110]
box-shadow:
0 4px 15px rgba(255, 193, 7, 0.3),
[cite_start]0 0 20px rgba(255, 193, 7, 0.2) !important; [cite: 111]
}
.primary-btn:hover {
[cite_start]transform: translateY(-2px) !important; [cite: 112]
box-shadow:
0 8px 25px rgba(255, 193, 7, 0.4),
[cite_start]0 0 30px rgba(255, 193, 7, 0.3) !important; [cite: 113]
}
/* Enhanced Text inputs with glow */
.gradio-textbox input, .gradio-textbox textarea {
[cite_start]background: rgba(45, 45, 45, 0.8) !important; [cite: 114]
[cite_start]color: #ffffff !important; [cite: 114]
[cite_start]border: 2px solid rgba(255, 193, 7, 0.2) !important; [cite: 114]
[cite_start]border-radius: 12px !important; [cite: 114]
[cite_start]font-size: 0.95rem !important; [cite: 115]
[cite_start]padding: 0.75rem 1rem !important; [cite: 115]
[cite_start]transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important; [cite: 115]
[cite_start]backdrop-filter: blur(10px) !important; [cite: 116]
[cite_start]box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.1) !important; [cite: 117]
}
.gradio-textbox input:focus, .gradio-textbox textarea:focus {
[cite_start]border-color: rgba(255, 193, 7, 0.5) !important; [cite: 118]
box-shadow:
0 0 20px rgba(255, 193, 7, 0.2),
[cite_start]inset 0 2px 4px rgba(0, 0, 0, 0.1) !important; [cite: 119]
[cite_start]outline: none !important; [cite: 119]
}
/* Enhanced Processing indicator */
.processing-indicator {
[cite_start]background: linear-gradient(135deg, rgba(255, 193, 7, 0.15), rgba(255, 193, 7, 0.08)); [cite: 120]
[cite_start]border: 2px solid rgba(255, 193, 7, 0.3); [cite: 120]
[cite_start]border-radius: 12px; [cite: 120]
[cite_start]padding: 1rem 1.5rem; [cite: 120]
[cite_start]margin: 1rem 0; [cite: 120]
[cite_start]color: #ffc107; [cite: 120]
[cite_start]text-align: center; [cite: 121]
[cite_start]font-weight: 500; [cite: 121]
[cite_start]backdrop-filter: blur(10px); [cite: 121]
box-shadow:
0 0 25px rgba(255, 193, 7, 0.1),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.1); [cite: 122]
[cite_start]animation: processingPulse 2s ease-in-out infinite; [cite: 122]
}
@keyframes processingPulse {
[cite_start]0%, 100% { opacity: 1; [cite: 123] }
[cite_start]50% { opacity: 0.8; [cite: 124] }
}
/* Enhanced Input row styling */
.input-row {
[cite_start]display: flex !important; [cite: 125]
[cite_start]gap: 12px !important; [cite: 125]
[cite_start]align-items: end !important; [cite: 125]
}
/* Message input */
.message-input {
[cite_start]flex: 1 !important; [cite: 126]
[cite_start]min-height: 48px !important; [cite: 126]
}
/* Markdown content styling - applies to text within gr.Markdown components */
.markdown-content {
color: #ffffff !important; [cite_start]/* UPDATED from #e0e0e0 */ [cite: 127]
[cite_start]line-height: 1.6 !important; [cite: 128]
[cite_start]font-size: 0.95rem !important; [cite: 128]
}
.markdown-content h1, .markdown-content h2, .markdown-content h3 {
[cite_start]color: #ffc107 !important; [cite: 129]
[cite_start]margin-top: 1.5rem !important; [cite: 129]
[cite_start]margin-bottom: 0.5rem !important; [cite: 129]
}
.markdown-content code {
[cite_start]background: rgba(255, 193, 7, 0.1) !important; [cite: 130]
[cite_start]color: #ffc107 !important; [cite: 130]
[cite_start]padding: 0.2rem 0.4rem !important; [cite: 130]
[cite_start]border-radius: 4px !important; [cite: 131]
}
.markdown-content pre {
[cite_start]background: rgba(0, 0, 0, 0.3) !important; [cite: 132]
[cite_start]border: 1px solid rgba(255, 193, 7, 0.2) !important; [cite: 132]
[cite_start]border-radius: 8px !important; [cite: 132]
[cite_start]padding: 1rem !important; [cite: 132]
[cite_start]margin: 1rem 0 !important; [cite: 133]
}
/* Examples styling */
.examples {
[cite_start]background: rgba(45, 45, 45, 0.3) !important; [cite: 134]
[cite_start]border-radius: 12px !important; [cite: 134]
[cite_start]padding: 1rem !important; [cite: 134]
[cite_start]border: 1px solid rgba(255, 193, 7, 0.1) !important; [cite: 134]
[cite_start]backdrop-filter: blur(10px) !important; [cite: 134]
color: #ffffff !important; [cite_start]/* UPDATED from #e0e0e0 */ [cite: 135]
}
/* General paragraph text and Gradio HTML components (for architecture text) */
.gradio-container p,
.gradio-container .gr-html {
color: #ffffff !important; [cite_start]/* UPDATED from #e0e0e0 */ [cite: 136]
}
/* Loading animation */
@keyframes loading {
[cite_start]0% { transform: rotate(0deg); [cite: 137] }
[cite_start]100% { transform: rotate(360deg); [cite: 138] }
}
.loading {
[cite_start]animation: loading 2s linear infinite; [cite: 139]
}
/* Responsive design */
""",
title="Agentic RAG Assistant"
) as iface:
# Header
with gr.Row():
with gr.Column():
gr.HTML("""
<div class="header">
[cite_start]<h1> Agentic RAG Assistant</h1> [cite: 140]
<p>Upload documents and ask questions - powered by Multi-Agent Architecture with streaming responses</p>
</div>
""")
# Main layout with sidebar and chat
[cite_start]with gr.Row(): [cite: 141]
# Left sidebar for file upload
with gr.Column(scale=1, elem_classes=["sidebar"]):
gr.Markdown("### 刀 Document Upload", elem_classes=["markdown-content"])
file_upload = gr.File(
[cite_start]file_count="multiple", [cite: 142]
[cite_start]file_types=[".pdf", ".pptx", ".csv", ".docx", ".txt", ".md"], [cite: 142]
[cite_start]label="塘 Upload Documents", [cite: 142]
[cite_start]elem_classes=["upload-area"] [cite: 142]
)
[cite_start]processing_status = gr.HTML(visible=False) [cite: 143]
process_btn = gr.Button(
" Process Documents",
variant="primary",
[cite_start]elem_classes=["primary-btn"] [cite: 144]
)
# REMOVED the Architecture Markdown block
# Right side - Chat interface
with gr.Column(scale=2):
gr.Markdown("### 町 Chat Interface", elem_classes=["markdown-content"])
# Chatbot with enhanced styling
[cite_start]chatbot = gr.Chatbot( [cite: 148]
[cite_start]height=400, [cite: 148]
[cite_start]elem_classes=["gradio-chatbot"], [cite: 148]
[cite_start]show_copy_button=True, [cite: 148]
[cite_start]type="messages", [cite: 149]
[cite_start]placeholder="Upload documents , then start chatting! Ask me anything about your documents.", [cite: 149, 150]
avatar_images=("側", "、")
)
# Input area with improved layout
with gr.Row(elem_classes=["input-row"]):
[cite_start]msg_input = gr.Textbox( [cite: 151]
[cite_start]placeholder="Ask about your documents...", [cite: 151]
[cite_start]label="Message", [cite: 151]
[cite_start]scale=4, [cite: 151]
[cite_start]elem_classes=["message-input"], [cite: 152]
[cite_start]show_label=False, [cite: 152]
[cite_start]autofocus=True [cite: 152]
)
[cite_start]send_btn = gr.Button( [cite: 153]
" Send",
scale=1,
[cite_start]elem_classes=["send-btn"], [cite: 153]
[cite_start]size="sm" [cite: 154]
)
# Enhanced Examples - UPDATED with fewer examples
gr.Examples(
examples=[
[cite_start]"Summarize the key findings", [cite: 155]
[cite_start]"What are the main topics discussed?", [cite: 155]
],
[cite_start]inputs=msg_input, [cite: 156]
[cite_start]label=" Example Questions", [cite: 157]
elem_classes=["examples"]
)
# State to track document processing
doc_processed = gr.State(False)
# Event handlers
[cite_start]def handle_file_upload_and_process(files): [cite: 158]
if not files:
return gr.update(visible=False), False
# Show processing indicator
processing_html = f"""
<div class="processing-indicator">
[cite_start]Processing {len(files)} documents... Please wait while we analyze your content. [cite: 159]
</div>
"""
# Process files
try:
result = coordinator_agent.process_files(files)
# Wait a moment for processing to complete
[cite_start]import time [cite: 161]
[cite_start]time.sleep(3) [cite: 161]
success_html = """
<div style="background: linear-gradient(135deg, rgba(76, 175, 80, 0.15), rgba(76, 175, 80, 0.08));
border: 2px solid rgba(76, 175, 80, 0.3); border-radius: 12px; padding: 1rem 1.5rem;
color: #4caf50; text-align: center; backdrop-filter: blur(10px);
box-shadow: 0 0 20px rgba(76, 175, 80, 0.1);">
Documents processed successfully! You can now ask questions about your content.
</div>
[cite_start]""" [cite: 162, 163, 164]
return gr.update(value=success_html, visible=True), True
except Exception as e:
error_html = f"""
<div style="background: linear-gradient(135deg, rgba(244, 67, 54, 0.15), rgba(244, 67, 54, 0.08));
border: 2px solid rgba(244, 67, 54, 0.3); border-radius: 12px; padding: 1rem 1.5rem;
color: #f44336; text-align: center; backdrop-filter: blur(10px);
box-shadow: 0 0 20px rgba(244, 67, 54, 0.1);">
Error processing documents: {str(e)}
</div>
[cite_start]""" [cite: 165, 166]
return gr.update(value=error_html, visible=True), False
[cite_start]def respond(message, history, doc_ready): [cite: 167]
if not doc_ready:
# Show error message
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": " Please upload and process documents first before asking questions."})
[cite_start]return history, "" [cite: 168]
if not message.strip():
return history, message
# Add user message
history.append({"role": "user", "content": message})
[cite_start]history.append({"role": "assistant", "content": ""}) [cite: 169]
# Stream response
try:
for token in coordinator_agent.handle_query(message, history):
history[-1]["content"] += token
[cite_start]yield history, "" [cite: 170]
except Exception as e:
history[-1]["content"] = f" Error generating response: {str(e)}"
yield history, ""
# Event bindings
process_btn.click(
handle_file_upload_and_process,
[cite_start]inputs=[file_upload], [cite: 171]
[cite_start]outputs=[processing_status, doc_processed] [cite: 171]
)
send_btn.click(
respond,
inputs=[msg_input, chatbot, doc_processed],
outputs=[chatbot, msg_input],
show_progress=True
)
[cite_start]msg_input.submit( [cite: 172]
respond,
inputs=[msg_input, chatbot, doc_processed],
outputs=[chatbot, msg_input],
show_progress=True
)
return iface
# Launch the application
if __name__ == "__main__":
demo = create_interface()
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860
)