Spaces:
Sleeping
Sleeping
File size: 41,861 Bytes
1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 620f836 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 4e070e0 02fc469 2ea78e5 1b4bf2d 02fc469 df9085f 02fc469 5391728 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 02fc469 5391728 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 5391728 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 1b4bf2d 02fc469 1b4bf2d 5391728 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 02fc469 5391728 1b4bf2d 5391728 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 02fc469 df9085f 02fc469 5391728 02fc469 1b4bf2d 02fc469 4e070e0 02fc469 1b4bf2d 5391728 02fc469 4e070e0 5391728 02fc469 4e070e0 02fc469 5391728 02fc469 4e070e0 02fc469 4e070e0 02fc469 4e070e0 02fc469 4e070e0 02fc469 4e070e0 1b4bf2d 4e070e0 5391728 4e070e0 02fc469 4e070e0 02fc469 4e070e0 02fc469 1b4bf2d 4e070e0 df9085f 4e070e0 df9085f 4e070e0 df9085f 1b4bf2d 02fc469 5391728 02fc469 4e070e0 02fc469 5391728 02fc469 4e070e0 02fc469 5391728 02fc469 5391728 02fc469 5391728 4e070e0 02fc469 4e070e0 02fc469 4e070e0 02fc469 4e070e0 02fc469 4e070e0 02fc469 4e070e0 02fc469 4e070e0 5391728 4e070e0 1b4bf2d 02fc469 4e070e0 02fc469 1b4bf2d 9994ccc c9e1414 02fc469 9994ccc 02fc469 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 9994ccc ddd707b 078a0ee 464b784 9994ccc 464b784 ddd707b c9e1414 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 9994ccc ddd707b 4134b9e 464b784 9994ccc 464b784 ddd707b 9994ccc 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 ddd707b 464b784 c9e1414 02fc469 3398b2c 9994ccc ddd707b 87ce59b 9994ccc 3398b2c 9994ccc ddd707b 9994ccc ddd707b c9e1414 9994ccc ddd707b 9994ccc ddd707b 9994ccc 87ce59b 9994ccc ddd707b 9994ccc ddd707b 9994ccc ddd707b 9994ccc ddd707b 432cda5 9994ccc ddd707b 078a0ee ddd707b 87ce59b 9994ccc ddd707b 078a0ee ddd707b 9994ccc ddd707b 9994ccc ddd707b 9994ccc 4e070e0 9994ccc c9e1414 078a0ee ddd707b c9e1414 ef02ed3 4134b9e ef02ed3 9994ccc ddd707b ef02ed3 c9e1414 078a0ee c9e1414 9994ccc ddd707b c9e1414 ef02ed3 9994ccc 87ce59b ef02ed3 ddd707b ef02ed3 c9e1414 ef02ed3 9994ccc 87ce59b ef02ed3 ddd707b ef02ed3 c9e1414 ddd707b ef02ed3 9994ccc ef02ed3 87ce59b ddd707b c9e1414 ef02ed3 4e070e0 ddd707b c9e1414 078a0ee 4e070e0 ef02ed3 ddd707b 4e070e0 87ce59b 4e070e0 ef02ed3 078a0ee ef02ed3 ddd707b 1b4bf2d ef02ed3 c9e1414 02fc469 ef02ed3 1b4bf2d ef02ed3 ddd707b 02fc469 ef02ed3 1b4bf2d 3398b2c 02fc469 ddd707b 02fc469 1b4bf2d 2fd872a 1b4bf2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 |
import gradio as gr
import os
import json
import uuid
import asyncio
from datetime import datetime
from typing import List, Dict, Any, Optional, Generator
import logging
# Import required libraries
from huggingface_hub import InferenceClient
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.docstore.document import Document
# Import document parsers
import PyPDF2
from pptx import Presentation
import pandas as pd
from docx import Document as DocxDocument
import io
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Get HuggingFace token from environment
HF_TOKEN = os.getenv("hf_token")
if not HF_TOKEN:
raise ValueError("HuggingFace token not found in environment variables")
# Initialize HuggingFace Inference Client
client = InferenceClient(model="meta-llama/Llama-3.1-8B-Instruct", token=HF_TOKEN)
# Initialize embeddings
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
class MCPMessage:
"""Model Context Protocol Message Structure"""
def __init__(self, sender: str, receiver: str, msg_type: str,
trace_id: str = None, payload: Dict = None):
self.sender = sender
self.receiver = receiver
self.type = msg_type
self.trace_id = trace_id or str(uuid.uuid4())
self.payload = payload or {}
self.timestamp = datetime.now().isoformat()
def to_dict(self):
return {
"sender": self.sender,
"receiver": self.receiver,
"type": self.type,
"trace_id": self.trace_id,
"payload": self.payload,
"timestamp": self.timestamp
}
class MessageBus:
"""In-memory message bus for MCP communication"""
def __init__(self):
self.messages = []
self.subscribers = {}
def publish(self, message: MCPMessage):
"""Publish message to the bus"""
self.messages.append(message)
logger.info(f"Message published: {message.sender} -> {message.receiver} [{message.type}]")
# Notify subscribers
if message.receiver in self.subscribers:
for callback in self.subscribers[message.receiver]:
callback(message)
def subscribe(self, agent_name: str, callback):
"""Subscribe agent to receive messages"""
if agent_name not in self.subscribers:
self.subscribers[agent_name] = []
self.subscribers[agent_name].append(callback)
# Global message bus
message_bus = MessageBus()
class IngestionAgent:
"""Agent responsible for document parsing and preprocessing"""
def __init__(self, message_bus: MessageBus):
self.name = "IngestionAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "INGESTION_REQUEST":
self.process_documents(message)
def parse_pdf(self, file_path: str) -> str:
"""Parse PDF document"""
try:
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
except Exception as e:
logger.error(f"Error parsing PDF: {e}")
return ""
def parse_pptx(self, file_path: str) -> str:
"""Parse PPTX document"""
try:
prs = Presentation(file_path)
text = ""
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
return text
except Exception as e:
logger.error(f"Error parsing PPTX: {e}")
return ""
def parse_csv(self, file_path: str) -> str:
"""Parse CSV document"""
try:
df = pd.read_csv(file_path)
return df.to_string()
except Exception as e:
logger.error(f"Error parsing CSV: {e}")
return ""
def parse_docx(self, file_path: str) -> str:
"""Parse DOCX document"""
try:
doc = DocxDocument(file_path)
text = ""
for paragraph in doc.paragraphs:
text += paragraph.text + "\n"
return text
except Exception as e:
logger.error(f"Error parsing DOCX: {e}")
return ""
def parse_txt(self, file_path: str) -> str:
"""Parse TXT/Markdown document"""
try:
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
except Exception as e:
logger.error(f"Error parsing TXT: {e}")
return ""
def process_documents(self, message: MCPMessage):
"""Process uploaded documents"""
files = message.payload.get("files", [])
processed_docs = []
for file_path in files:
file_ext = os.path.splitext(file_path)[1].lower()
# Parse document based on file type
if file_ext == '.pdf':
text = self.parse_pdf(file_path)
elif file_ext == '.pptx':
text = self.parse_pptx(file_path)
elif file_ext == '.csv':
text = self.parse_csv(file_path)
elif file_ext == '.docx':
text = self.parse_docx(file_path)
elif file_ext in ['.txt', '.md']:
text = self.parse_txt(file_path)
else:
logger.warning(f"Unsupported file type: {file_ext}")
continue
if text:
# Split text into chunks
chunks = self.text_splitter.split_text(text)
docs = [Document(page_content=chunk, metadata={"source": file_path})
for chunk in chunks]
processed_docs.extend(docs)
# Send processed documents to RetrievalAgent
response = MCPMessage(
sender=self.name,
receiver="RetrievalAgent",
msg_type="INGESTION_COMPLETE",
trace_id=message.trace_id,
payload={"documents": processed_docs}
)
self.message_bus.publish(response)
class RetrievalAgent:
"""Agent responsible for embedding and semantic retrieval"""
def __init__(self, message_bus: MessageBus):
self.name = "RetrievalAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
self.vector_store = None
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "INGESTION_COMPLETE":
self.create_vector_store(message)
elif message.type == "RETRIEVAL_REQUEST":
self.retrieve_context(message)
def create_vector_store(self, message: MCPMessage):
"""Create vector store from processed documents"""
documents = message.payload.get("documents", [])
if documents:
try:
self.vector_store = FAISS.from_documents(documents, embeddings)
logger.info(f"Vector store created with {len(documents)} documents")
# Notify completion
response = MCPMessage(
sender=self.name,
receiver="CoordinatorAgent",
msg_type="VECTORSTORE_READY",
trace_id=message.trace_id,
payload={"status": "ready"}
)
self.message_bus.publish(response)
except Exception as e:
logger.error(f"Error creating vector store: {e}")
def retrieve_context(self, message: MCPMessage):
"""Retrieve relevant context for a query"""
query = message.payload.get("query", "")
k = message.payload.get("k", 3)
if self.vector_store and query:
try:
docs = self.vector_store.similarity_search(query, k=k)
context = [{"content": doc.page_content, "source": doc.metadata.get("source", "")}
for doc in docs]
response = MCPMessage(
sender=self.name,
receiver="LLMResponseAgent",
msg_type="CONTEXT_RESPONSE",
trace_id=message.trace_id,
payload={
"query": query,
"retrieved_context": context,
"top_chunks": [doc.page_content for doc in docs]
}
)
self.message_bus.publish(response)
except Exception as e:
logger.error(f"Error retrieving context: {e}")
class LLMResponseAgent:
"""Agent responsible for generating LLM responses"""
def __init__(self, message_bus: MessageBus):
self.name = "LLMResponseAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "CONTEXT_RESPONSE":
self.generate_response(message)
def generate_response(self, message: MCPMessage):
"""Generate response using retrieved context"""
query = message.payload.get("query", "")
context = message.payload.get("retrieved_context", [])
# Build context string
context_text = "\n\n".join([f"Source: {ctx['source']}\nContent: {ctx['content']}"
for ctx in context])
# Create messages for conversational format
messages = [
{
"role": "system",
"content": "You are a helpful assistant. Based on the provided context below, answer the user's question accurately and comprehensively. Cite the sources if possible.",
},
{
"role": "user",
"content": f"Context:\n\n{context_text}\n\nQuestion: {query}"
}
]
try:
# Use client.chat_completion for conversational models
response_stream = client.chat_completion(
messages=messages,
max_tokens=512,
temperature=0.7,
stream=True
)
# Send streaming response
response = MCPMessage(
sender=self.name,
receiver="CoordinatorAgent",
msg_type="LLM_RESPONSE_STREAM",
trace_id=message.trace_id,
payload={
"query": query,
"response_stream": response_stream,
"context": context
}
)
self.message_bus.publish(response)
except Exception as e:
logger.error(f"Error generating response: {e}")
# Send an error stream back
error_msg = f"Error from LLM: {e}"
def error_generator():
yield error_msg
response = MCPMessage(
sender=self.name,
receiver="CoordinatorAgent",
msg_type="LLM_RESPONSE_STREAM",
trace_id=message.trace_id,
payload={"response_stream": error_generator()}
)
self.message_bus.publish(response)
class CoordinatorAgent:
"""Coordinator agent that orchestrates the entire workflow"""
def __init__(self, message_bus: MessageBus):
self.name = "CoordinatorAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
self.current_response_stream = None
self.vector_store_ready = False
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "VECTORSTORE_READY":
self.vector_store_ready = True
elif message.type == "LLM_RESPONSE_STREAM":
self.current_response_stream = message.payload.get("response_stream")
def process_files(self, files):
"""Process uploaded files"""
if not files:
return "No files uploaded."
file_paths = [file.name for file in files]
# Send ingestion request
message = MCPMessage(
sender=self.name,
receiver="IngestionAgent",
msg_type="INGESTION_REQUEST",
payload={"files": file_paths}
)
self.message_bus.publish(message)
return f"Processing {len(files)} files: {', '.join([os.path.basename(fp) for fp in file_paths])}"
def handle_query(self, query: str, history: List) -> Generator[str, None, None]:
"""Handle user query and return streaming response"""
if not self.vector_store_ready:
yield "Please upload and process documents first."
return
# Send retrieval request
message = MCPMessage(
sender=self.name,
receiver="RetrievalAgent",
msg_type="RETRIEVAL_REQUEST",
payload={"query": query}
)
self.message_bus.publish(message)
# Wait for response and stream
import time
timeout = 20 # seconds
start_time = time.time()
while not self.current_response_stream and (time.time() - start_time) < timeout:
time.sleep(0.1)
if self.current_response_stream:
try:
# Stream tokens directly
for chunk in self.current_response_stream:
# The token is in chunk.choices[0].delta.content for chat_completion
if hasattr(chunk, 'choices') and chunk.choices:
token = chunk.choices[0].delta.content
if token:
yield token
else:
# Fallback for different response format
if hasattr(chunk, 'token'):
yield chunk.token
elif isinstance(chunk, str):
yield chunk
except Exception as e:
yield f"Error streaming response: {e}"
finally:
self.current_response_stream = None # Reset for next query
else:
yield "Timeout: No response received from LLM agent."
# Initialize agents
ingestion_agent = IngestionAgent(message_bus)
retrieval_agent = RetrievalAgent(message_bus)
llm_response_agent = LLMResponseAgent(message_bus)
coordinator_agent = CoordinatorAgent(message_bus)
def create_interface():
"""Create enhanced ChatGPT-style Gradio interface with glowing effects"""
with gr.Blocks(
theme=gr.themes.Base(),
css="""
/* Import Google Fonts for better typography */
[cite_start]@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap'); [cite: 52]
/* Dark theme styling with enhanced visuals */
.gradio-container {
[cite_start]background: linear-gradient(135deg, #0a0a0a 0%, #1a1a2e 50%, #16213e 100%) !important; [cite: 52]
color: #ffffff !important; [cite_start]/* Ensure base text color is bright */ [cite: 53]
[cite_start]height: 100vh !important; [cite: 53]
[cite_start]max-width: none !important; [cite: 54]
[cite_start]padding: 0 !important; [cite: 54]
[cite_start]font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important; [cite: 55]
}
/* Main container with animated background */
.main-container {
[cite_start]display: flex; [cite: 56]
[cite_start]flex-direction: column; [cite: 56]
[cite_start]height: 100vh; [cite: 56]
background:
radial-gradient(circle at 20% 50%, rgba(255, 193, 7, 0.05) 0%, transparent 50%),
radial-gradient(circle at 80% 20%, rgba(0, 123, 255, 0.05) 0%, transparent 50%),
radial-gradient(circle at 40% 80%, rgba(255, 87, 34, 0.03) 0%, transparent 50%),
[cite_start]linear-gradient(135deg, #0a0a0a 0%, #1a1a2e 50%, #16213e 100%); [cite: 56]
[cite_start]animation: backgroundShift 15s ease-in-out infinite alternate; [cite: 57]
}
@keyframes backgroundShift {
[cite_start]0% { filter: hue-rotate(0deg); [cite: 58] }
[cite_start]100% { filter: hue-rotate(10deg); [cite: 59] }
}
/* Enhanced Header with glow */
.header {
[cite_start]background: rgba(255, 193, 7, 0.08); [cite: 60]
[cite_start]border-bottom: 2px solid transparent; [cite: 60]
[cite_start]border-image: linear-gradient(90deg, rgba(255, 193, 7, 0.5), rgba(0, 123, 255, 0.3)) 1; [cite: 60]
[cite_start]padding: 1.5rem 2rem; [cite: 60]
[cite_start]backdrop-filter: blur(20px); [cite: 61]
box-shadow:
0 4px 20px rgba(255, 193, 7, 0.1),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.1); [cite: 61]
[cite_start]position: relative; [cite: 62]
[cite_start]overflow: hidden; [cite: 62]
}
.header::before {
[cite_start]content: ''; [cite: 63]
[cite_start]position: absolute; [cite: 63]
[cite_start]top: 0; [cite: 63]
[cite_start]left: -100%; [cite: 63]
[cite_start]width: 100%; [cite: 63]
[cite_start]height: 100%; [cite: 63]
[cite_start]background: linear-gradient(90deg, transparent, rgba(255, 193, 7, 0.1), transparent); [cite: 63]
[cite_start]animation: shimmer 3s ease-in-out infinite; [cite: 64]
}
@keyframes shimmer {
[cite_start]0% { left: -100%; [cite: 65] }
[cite_start]100% { left: 100%; [cite: 66] }
}
.header h1 {
[cite_start]color: #ffc107; [cite: 67]
[cite_start]margin: 0; [cite: 67]
[cite_start]font-size: 2rem; [cite: 67]
[cite_start]font-weight: 700; [cite: 67]
text-shadow:
0 0 10px rgba(255, 193, 7, 0.3),
[cite_start]0 0 20px rgba(255, 193, 7, 0.2); [cite: 67]
[cite_start]letter-spacing: -0.02em; [cite: 68]
}
.header p {
color: #ffffff; [cite_start]/* UPDATED from #e0e0e0 */ [cite: 69]
[cite_start]margin: 0.5rem 0 0 0; [cite: 69]
[cite_start]font-size: 1rem; [cite: 69]
[cite_start]font-weight: 400; [cite: 69]
[cite_start]opacity: 0.9; [cite: 70]
}
/* Enhanced Chat container */
.chat-container {
[cite_start]flex: 1; [cite: 71]
[cite_start]display: flex; [cite: 71]
[cite_start]flex-direction: column; [cite: 71]
[cite_start]max-width: 1200px; [cite: 71]
[cite_start]margin: 0 auto; [cite: 71]
[cite_start]width: 100%; [cite: 71]
[cite_start]padding: 2rem; [cite: 71]
[cite_start]height: calc(100vh - 200px) !important; [cite: 71]
[cite_start]gap: 1.5rem; [cite: 72]
}
/* Enhanced Chatbot with glow effect */
.gradio-chatbot {
[cite_start]height: 400px !important; [cite: 73]
[cite_start]max-height: 400px !important; [cite: 73]
[cite_start]background: rgba(45, 45, 45, 0.4) !important; [cite: 73]
[cite_start]border: 2px solid rgba(255, 193, 7, 0.2) !important; [cite: 73]
[cite_start]border-radius: 20px !important; [cite: 74]
[cite_start]margin-bottom: 1rem; [cite: 74]
[cite_start]overflow-y: auto !important; [cite: 74]
box-shadow:
0 0 30px rgba(255, 193, 7, 0.15),
0 8px 32px rgba(0, 0, 0, 0.3),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.05) !important; [cite: 74]
[cite_start]backdrop-filter: blur(20px) !important; [cite: 75]
[cite_start]position: relative; [cite: 75]
[cite_start]animation: chatGlow 4s ease-in-out infinite alternate; [cite: 76]
}
@keyframes chatGlow {
0% {
box-shadow:
0 0 30px rgba(255, 193, 7, 0.15),
0 8px 32px rgba(0, 0, 0, 0.3),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.05); [cite: 77]
}
100% {
box-shadow:
0 0 40px rgba(255, 193, 7, 0.25),
0 12px 40px rgba(0, 0, 0, 0.4),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.08); [cite: 78]
}
}
/* Enhanced chat messages */
.message {
[cite_start]background: rgba(255, 255, 255, 0.05) !important; [cite: 79]
[cite_start]border-radius: 16px !important; [cite: 79]
[cite_start]padding: 1rem 1.5rem !important; [cite: 79]
[cite_start]margin: 0.75rem 0 !important; [cite: 79]
[cite_start]border: 1px solid rgba(255, 255, 255, 0.1) !important; [cite: 80]
[cite_start]backdrop-filter: blur(10px) !important; [cite: 80]
[cite_start]font-size: 0.95rem !important; [cite: 80]
[cite_start]line-height: 1.6 !important; [cite: 80]
[cite_start]box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1) !important; [cite: 81]
[cite_start]transition: all 0.3s ease !important; [cite: 81]
color: #ffffff !important; [cite_start]/* Made brighter for all messages */ [cite: 81]
}
.message:hover {
[cite_start]transform: translateY(-1px) !important; [cite: 82]
[cite_start]box-shadow: 0 4px 15px rgba(0, 0, 0, 0.15) !important; [cite: 82]
}
/* User message styling */
.message.user {
[cite_start]background: linear-gradient(135deg, rgba(255, 193, 7, 0.1), rgba(255, 193, 7, 0.05)) !important; [cite: 83]
[cite_start]border-color: rgba(255, 193, 7, 0.2) !important; [cite: 83]
[cite_start]margin-left: 15% !important; [cite: 83]
box-shadow:
0 2px 10px rgba(255, 193, 7, 0.1),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.05) !important; [cite: 84]
}
/* Assistant message styling - important for streaming text */
.message.assistant {
[cite_start]background: linear-gradient(135deg, rgba(0, 123, 255, 0.08), rgba(0, 123, 255, 0.04)) !important; [cite: 85]
[cite_start]border-color: rgba(0, 123, 255, 0.2) !important; [cite: 85]
[cite_start]margin-right: 15% !important; [cite: 85]
box-shadow:
0 2px 10px rgba(0, 123, 255, 0.1),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.05) !important; [cite: 86]
color: #ffffff !important; [cite_start]/* Ensures generated text is bright white */ [cite: 86]
}
/* Enhanced Input area with glow */
.input-area {
[cite_start]background: rgba(45, 45, 45, 0.6); [cite: 87]
[cite_start]border-radius: 20px; [cite: 87]
[cite_start]padding: 1.5rem; [cite: 87]
[cite_start]border: 2px solid rgba(255, 193, 7, 0.2); [cite: 87]
[cite_start]backdrop-filter: blur(20px); [cite: 87]
[cite_start]position: sticky; [cite: 87]
[cite_start]bottom: 0; [cite: 88]
box-shadow:
0 0 25px rgba(255, 193, 7, 0.1),
0 8px 32px rgba(0, 0, 0, 0.2),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.05); [cite: 89]
[cite_start]animation: inputGlow 3s ease-in-out infinite alternate; [cite: 89]
}
@keyframes inputGlow {
0% {
box-shadow:
0 0 25px rgba(255, 193, 7, 0.1),
0 8px 32px rgba(0, 0, 0, 0.2),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.05); [cite: 90]
}
100% {
box-shadow:
0 0 35px rgba(255, 193, 7, 0.2),
0 12px 40px rgba(0, 0, 0, 0.3),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.08); [cite: 91]
}
}
/* Enhanced File upload area */
.upload-area {
[cite_start]background: linear-gradient(135deg, rgba(255, 193, 7, 0.08), rgba(255, 193, 7, 0.04)) !important; [cite: 92]
[cite_start]border: 2px dashed rgba(255, 193, 7, 0.4) !important; [cite: 92]
[cite_start]border-radius: 16px !important; [cite: 92]
[cite_start]padding: 1.5rem !important; [cite: 92]
[cite_start]margin-bottom: 1.5rem !important; [cite: 93]
[cite_start]transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1) !important; [cite: 93]
[cite_start]backdrop-filter: blur(10px) !important; [cite: 94]
box-shadow:
0 0 20px rgba(255, 193, 7, 0.05),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.05) !important; [cite: 95]
}
.upload-area:hover {
[cite_start]background: linear-gradient(135deg, rgba(255, 193, 7, 0.12), rgba(255, 193, 7, 0.06)) !important; [cite: 96]
[cite_start]border-color: rgba(255, 193, 7, 0.6) !important; [cite: 96]
box-shadow:
0 0 30px rgba(255, 193, 7, 0.15),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.08) !important; [cite: 97]
[cite_start]transform: translateY(-2px) !important; [cite: 97]
}
/* Sidebar styling */
.sidebar {
[cite_start]background: rgba(30, 30, 30, 0.6) !important; [cite: 98]
[cite_start]border-right: 2px solid rgba(255, 193, 7, 0.1) !important; [cite: 98]
[cite_start]backdrop-filter: blur(15px) !important; [cite: 99]
box-shadow:
inset -1px 0 0 rgba(255, 255, 255, 0.05),
[cite_start]4px 0 20px rgba(0, 0, 0, 0.1) !important; [cite: 100]
}
/* Enhanced buttons with glow effects */
.send-btn {
[cite_start]background: linear-gradient(135deg, #ffc107 0%, #ff8f00 100%) !important; [cite: 101]
[cite_start]color: #000000 !important; [cite: 101]
[cite_start]border: none !important; [cite: 101]
[cite_start]border-radius: 12px !important; [cite: 101]
[cite_start]font-weight: 600 !important; [cite: 101]
[cite_start]min-height: 48px !important; [cite: 101]
[cite_start]font-size: 0.95rem !important; [cite: 102]
[cite_start]transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important; [cite: 102]
box-shadow:
0 4px 15px rgba(255, 193, 7, 0.3),
[cite_start]0 0 20px rgba(255, 193, 7, 0.2) !important; [cite: 103]
[cite_start]position: relative; [cite: 103]
[cite_start]overflow: hidden; [cite: 103]
}
.send-btn::before {
[cite_start]content: ''; [cite: 104]
[cite_start]position: absolute; [cite: 104]
[cite_start]top: 0; [cite: 104]
[cite_start]left: -100%; [cite: 104]
[cite_start]width: 100%; [cite: 104]
[cite_start]height: 100%; [cite: 104]
[cite_start]background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent); [cite: 105]
[cite_start]transition: left 0.5s; [cite: 105]
}
.send-btn:hover::before {
[cite_start]left: 100%; [cite: 106]
}
.send-btn:hover {
[cite_start]transform: translateY(-2px) !important; [cite: 107]
box-shadow:
0 8px 25px rgba(255, 193, 7, 0.4),
[cite_start]0 0 30px rgba(255, 193, 7, 0.3) !important; [cite: 108]
}
.primary-btn {
[cite_start]background: linear-gradient(135deg, #ffc107 0%, #ff8f00 100%) !important; [cite: 109]
[cite_start]color: #000000 !important; [cite: 109]
[cite_start]border: none !important; [cite: 109]
[cite_start]border-radius: 12px !important; [cite: 109]
[cite_start]font-weight: 600 !important; [cite: 109]
[cite_start]padding: 0.75rem 1.5rem !important; [cite: 109]
[cite_start]font-size: 0.95rem !important; [cite: 110]
[cite_start]transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important; [cite: 110]
box-shadow:
0 4px 15px rgba(255, 193, 7, 0.3),
[cite_start]0 0 20px rgba(255, 193, 7, 0.2) !important; [cite: 111]
}
.primary-btn:hover {
[cite_start]transform: translateY(-2px) !important; [cite: 112]
box-shadow:
0 8px 25px rgba(255, 193, 7, 0.4),
[cite_start]0 0 30px rgba(255, 193, 7, 0.3) !important; [cite: 113]
}
/* Enhanced Text inputs with glow */
.gradio-textbox input, .gradio-textbox textarea {
[cite_start]background: rgba(45, 45, 45, 0.8) !important; [cite: 114]
[cite_start]color: #ffffff !important; [cite: 114]
[cite_start]border: 2px solid rgba(255, 193, 7, 0.2) !important; [cite: 114]
[cite_start]border-radius: 12px !important; [cite: 114]
[cite_start]font-size: 0.95rem !important; [cite: 115]
[cite_start]padding: 0.75rem 1rem !important; [cite: 115]
[cite_start]transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important; [cite: 115]
[cite_start]backdrop-filter: blur(10px) !important; [cite: 116]
[cite_start]box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.1) !important; [cite: 117]
}
.gradio-textbox input:focus, .gradio-textbox textarea:focus {
[cite_start]border-color: rgba(255, 193, 7, 0.5) !important; [cite: 118]
box-shadow:
0 0 20px rgba(255, 193, 7, 0.2),
[cite_start]inset 0 2px 4px rgba(0, 0, 0, 0.1) !important; [cite: 119]
[cite_start]outline: none !important; [cite: 119]
}
/* Enhanced Processing indicator */
.processing-indicator {
[cite_start]background: linear-gradient(135deg, rgba(255, 193, 7, 0.15), rgba(255, 193, 7, 0.08)); [cite: 120]
[cite_start]border: 2px solid rgba(255, 193, 7, 0.3); [cite: 120]
[cite_start]border-radius: 12px; [cite: 120]
[cite_start]padding: 1rem 1.5rem; [cite: 120]
[cite_start]margin: 1rem 0; [cite: 120]
[cite_start]color: #ffc107; [cite: 120]
[cite_start]text-align: center; [cite: 121]
[cite_start]font-weight: 500; [cite: 121]
[cite_start]backdrop-filter: blur(10px); [cite: 121]
box-shadow:
0 0 25px rgba(255, 193, 7, 0.1),
[cite_start]inset 0 1px 0 rgba(255, 255, 255, 0.1); [cite: 122]
[cite_start]animation: processingPulse 2s ease-in-out infinite; [cite: 122]
}
@keyframes processingPulse {
[cite_start]0%, 100% { opacity: 1; [cite: 123] }
[cite_start]50% { opacity: 0.8; [cite: 124] }
}
/* Enhanced Input row styling */
.input-row {
[cite_start]display: flex !important; [cite: 125]
[cite_start]gap: 12px !important; [cite: 125]
[cite_start]align-items: end !important; [cite: 125]
}
/* Message input */
.message-input {
[cite_start]flex: 1 !important; [cite: 126]
[cite_start]min-height: 48px !important; [cite: 126]
}
/* Markdown content styling - applies to text within gr.Markdown components */
.markdown-content {
color: #ffffff !important; [cite_start]/* UPDATED from #e0e0e0 */ [cite: 127]
[cite_start]line-height: 1.6 !important; [cite: 128]
[cite_start]font-size: 0.95rem !important; [cite: 128]
}
.markdown-content h1, .markdown-content h2, .markdown-content h3 {
[cite_start]color: #ffc107 !important; [cite: 129]
[cite_start]margin-top: 1.5rem !important; [cite: 129]
[cite_start]margin-bottom: 0.5rem !important; [cite: 129]
}
.markdown-content code {
[cite_start]background: rgba(255, 193, 7, 0.1) !important; [cite: 130]
[cite_start]color: #ffc107 !important; [cite: 130]
[cite_start]padding: 0.2rem 0.4rem !important; [cite: 130]
[cite_start]border-radius: 4px !important; [cite: 131]
}
.markdown-content pre {
[cite_start]background: rgba(0, 0, 0, 0.3) !important; [cite: 132]
[cite_start]border: 1px solid rgba(255, 193, 7, 0.2) !important; [cite: 132]
[cite_start]border-radius: 8px !important; [cite: 132]
[cite_start]padding: 1rem !important; [cite: 132]
[cite_start]margin: 1rem 0 !important; [cite: 133]
}
/* Examples styling */
.examples {
[cite_start]background: rgba(45, 45, 45, 0.3) !important; [cite: 134]
[cite_start]border-radius: 12px !important; [cite: 134]
[cite_start]padding: 1rem !important; [cite: 134]
[cite_start]border: 1px solid rgba(255, 193, 7, 0.1) !important; [cite: 134]
[cite_start]backdrop-filter: blur(10px) !important; [cite: 134]
color: #ffffff !important; [cite_start]/* UPDATED from #e0e0e0 */ [cite: 135]
}
/* General paragraph text and Gradio HTML components (for architecture text) */
.gradio-container p,
.gradio-container .gr-html {
color: #ffffff !important; [cite_start]/* UPDATED from #e0e0e0 */ [cite: 136]
}
/* Loading animation */
@keyframes loading {
[cite_start]0% { transform: rotate(0deg); [cite: 137] }
[cite_start]100% { transform: rotate(360deg); [cite: 138] }
}
.loading {
[cite_start]animation: loading 2s linear infinite; [cite: 139]
}
/* Responsive design */
""",
title="Agentic RAG Assistant"
) as iface:
# Header
with gr.Row():
with gr.Column():
gr.HTML("""
<div class="header">
[cite_start]<h1> Agentic RAG Assistant</h1> [cite: 140]
<p>Upload documents and ask questions - powered by Multi-Agent Architecture with streaming responses</p>
</div>
""")
# Main layout with sidebar and chat
[cite_start]with gr.Row(): [cite: 141]
# Left sidebar for file upload
with gr.Column(scale=1, elem_classes=["sidebar"]):
gr.Markdown("### ξε Document Upload", elem_classes=["markdown-content"])
file_upload = gr.File(
[cite_start]file_count="multiple", [cite: 142]
[cite_start]file_types=[".pdf", ".pptx", ".csv", ".docx", ".txt", ".md"], [cite: 142]
[cite_start]label="ξε‘ Upload Documents", [cite: 142]
[cite_start]elem_classes=["upload-area"] [cite: 142]
)
[cite_start]processing_status = gr.HTML(visible=False) [cite: 143]
process_btn = gr.Button(
" Process Documents",
variant="primary",
[cite_start]elem_classes=["primary-btn"] [cite: 144]
)
# REMOVED the Architecture Markdown block
# Right side - Chat interface
with gr.Column(scale=2):
gr.Markdown("### ξηΊ Chat Interface", elem_classes=["markdown-content"])
# Chatbot with enhanced styling
[cite_start]chatbot = gr.Chatbot( [cite: 148]
[cite_start]height=400, [cite: 148]
[cite_start]elem_classes=["gradio-chatbot"], [cite: 148]
[cite_start]show_copy_button=True, [cite: 148]
[cite_start]type="messages", [cite: 149]
[cite_start]placeholder="Upload documents , then start chatting! Ask me anything about your documents.", [cite: 149, 150]
avatar_images=("ξε΄", "ξο½€")
)
# Input area with improved layout
with gr.Row(elem_classes=["input-row"]):
[cite_start]msg_input = gr.Textbox( [cite: 151]
[cite_start]placeholder="Ask about your documents...", [cite: 151]
[cite_start]label="Message", [cite: 151]
[cite_start]scale=4, [cite: 151]
[cite_start]elem_classes=["message-input"], [cite: 152]
[cite_start]show_label=False, [cite: 152]
[cite_start]autofocus=True [cite: 152]
)
[cite_start]send_btn = gr.Button( [cite: 153]
" Send",
scale=1,
[cite_start]elem_classes=["send-btn"], [cite: 153]
[cite_start]size="sm" [cite: 154]
)
# Enhanced Examples - UPDATED with fewer examples
gr.Examples(
examples=[
[cite_start]"Summarize the key findings", [cite: 155]
[cite_start]"What are the main topics discussed?", [cite: 155]
],
[cite_start]inputs=msg_input, [cite: 156]
[cite_start]label=" Example Questions", [cite: 157]
elem_classes=["examples"]
)
# State to track document processing
doc_processed = gr.State(False)
# Event handlers
[cite_start]def handle_file_upload_and_process(files): [cite: 158]
if not files:
return gr.update(visible=False), False
# Show processing indicator
processing_html = f"""
<div class="processing-indicator">
[cite_start]Processing {len(files)} documents... Please wait while we analyze your content. [cite: 159]
</div>
"""
# Process files
try:
result = coordinator_agent.process_files(files)
# Wait a moment for processing to complete
[cite_start]import time [cite: 161]
[cite_start]time.sleep(3) [cite: 161]
success_html = """
<div style="background: linear-gradient(135deg, rgba(76, 175, 80, 0.15), rgba(76, 175, 80, 0.08));
border: 2px solid rgba(76, 175, 80, 0.3); border-radius: 12px; padding: 1rem 1.5rem;
color: #4caf50; text-align: center; backdrop-filter: blur(10px);
box-shadow: 0 0 20px rgba(76, 175, 80, 0.1);">
Documents processed successfully! You can now ask questions about your content.
</div>
[cite_start]""" [cite: 162, 163, 164]
return gr.update(value=success_html, visible=True), True
except Exception as e:
error_html = f"""
<div style="background: linear-gradient(135deg, rgba(244, 67, 54, 0.15), rgba(244, 67, 54, 0.08));
border: 2px solid rgba(244, 67, 54, 0.3); border-radius: 12px; padding: 1rem 1.5rem;
color: #f44336; text-align: center; backdrop-filter: blur(10px);
box-shadow: 0 0 20px rgba(244, 67, 54, 0.1);">
Error processing documents: {str(e)}
</div>
[cite_start]""" [cite: 165, 166]
return gr.update(value=error_html, visible=True), False
[cite_start]def respond(message, history, doc_ready): [cite: 167]
if not doc_ready:
# Show error message
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": " Please upload and process documents first before asking questions."})
[cite_start]return history, "" [cite: 168]
if not message.strip():
return history, message
# Add user message
history.append({"role": "user", "content": message})
[cite_start]history.append({"role": "assistant", "content": ""}) [cite: 169]
# Stream response
try:
for token in coordinator_agent.handle_query(message, history):
history[-1]["content"] += token
[cite_start]yield history, "" [cite: 170]
except Exception as e:
history[-1]["content"] = f" Error generating response: {str(e)}"
yield history, ""
# Event bindings
process_btn.click(
handle_file_upload_and_process,
[cite_start]inputs=[file_upload], [cite: 171]
[cite_start]outputs=[processing_status, doc_processed] [cite: 171]
)
send_btn.click(
respond,
inputs=[msg_input, chatbot, doc_processed],
outputs=[chatbot, msg_input],
show_progress=True
)
[cite_start]msg_input.submit( [cite: 172]
respond,
inputs=[msg_input, chatbot, doc_processed],
outputs=[chatbot, msg_input],
show_progress=True
)
return iface
# Launch the application
if __name__ == "__main__":
demo = create_interface()
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860
) |