Spaces:
Sleeping
Sleeping
File size: 19,107 Bytes
1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 620f836 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 2ea78e5 1b4bf2d 02fc469 5391728 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 02fc469 5391728 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 5391728 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 1b4bf2d 02fc469 1b4bf2d 5391728 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 02fc469 5391728 1b4bf2d 5391728 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 02fc469 5391728 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 02fc469 5391728 02fc469 5391728 02fc469 1b4bf2d 02fc469 5391728 02fc469 5391728 02fc469 1b4bf2d d4655d0 02fc469 1b4bf2d 02fc469 5391728 02fc469 1b4bf2d 5391728 02fc469 1b4bf2d 5391728 1b4bf2d 02fc469 5391728 02fc469 5391728 02fc469 5391728 02fc469 5391728 02fc469 5391728 02fc469 5391728 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 02fc469 5391728 1b4bf2d 02fc469 1b4bf2d 5391728 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 5391728 1b4bf2d 02fc469 620f836 1b4bf2d 5391728 1b4bf2d 02fc469 620f836 1b4bf2d 02fc469 5391728 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d 5391728 1b4bf2d 02fc469 1b4bf2d 5391728 02fc469 1b4bf2d 5391728 02fc469 1b4bf2d 5391728 02fc469 1b4bf2d 02fc469 1b4bf2d 02fc469 1b4bf2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 |
import gradio as gr
import os
import json
import uuid
import asyncio
from datetime import datetime
from typing import List, Dict, Any, Optional, Generator
import logging
# Import required libraries
from huggingface_hub import InferenceClient
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.docstore.document import Document
# Import document parsers
import PyPDF2
from pptx import Presentation
import pandas as pd
from docx import Document as DocxDocument
import io
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Get HuggingFace token from environment
HF_TOKEN = os.getenv("hf_token")
if not HF_TOKEN:
raise ValueError("HuggingFace token not found in environment variables")
# Initialize HuggingFace Inference Client
client = InferenceClient(model="meta-llama/Llama-3.1-8B-Instruct", token=HF_TOKEN)
# Initialize embeddings
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
class MCPMessage:
"""Model Context Protocol Message Structure"""
def __init__(self, sender: str, receiver: str, msg_type: str,
trace_id: str = None, payload: Dict = None):
self.sender = sender
self.receiver = receiver
self.type = msg_type
self.trace_id = trace_id or str(uuid.uuid4())
self.payload = payload or {}
self.timestamp = datetime.now().isoformat()
def to_dict(self):
return {
"sender": self.sender,
"receiver": self.receiver,
"type": self.type,
"trace_id": self.trace_id,
"payload": self.payload,
"timestamp": self.timestamp
}
class MessageBus:
"""In-memory message bus for MCP communication"""
def __init__(self):
self.messages = []
self.subscribers = {}
def publish(self, message: MCPMessage):
"""Publish message to the bus"""
self.messages.append(message)
logger.info(f"Message published: {message.sender} -> {message.receiver} [{message.type}]")
# Notify subscribers
if message.receiver in self.subscribers:
for callback in self.subscribers[message.receiver]:
callback(message)
def subscribe(self, agent_name: str, callback):
"""Subscribe agent to receive messages"""
if agent_name not in self.subscribers:
self.subscribers[agent_name] = []
self.subscribers[agent_name].append(callback)
# Global message bus
message_bus = MessageBus()
class IngestionAgent:
"""Agent responsible for document parsing and preprocessing"""
def __init__(self, message_bus: MessageBus):
self.name = "IngestionAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "INGESTION_REQUEST":
self.process_documents(message)
def parse_pdf(self, file_path: str) -> str:
"""Parse PDF document"""
try:
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
except Exception as e:
logger.error(f"Error parsing PDF: {e}")
return ""
def parse_pptx(self, file_path: str) -> str:
"""Parse PPTX document"""
try:
prs = Presentation(file_path)
text = ""
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
return text
except Exception as e:
logger.error(f"Error parsing PPTX: {e}")
return ""
def parse_csv(self, file_path: str) -> str:
"""Parse CSV document"""
try:
df = pd.read_csv(file_path)
return df.to_string()
except Exception as e:
logger.error(f"Error parsing CSV: {e}")
return ""
def parse_docx(self, file_path: str) -> str:
"""Parse DOCX document"""
try:
doc = DocxDocument(file_path)
text = ""
for paragraph in doc.paragraphs:
text += paragraph.text + "\n"
return text
except Exception as e:
logger.error(f"Error parsing DOCX: {e}")
return ""
def parse_txt(self, file_path: str) -> str:
"""Parse TXT/Markdown document"""
try:
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
except Exception as e:
logger.error(f"Error parsing TXT: {e}")
return ""
def process_documents(self, message: MCPMessage):
"""Process uploaded documents"""
files = message.payload.get("files", [])
processed_docs = []
for file_path in files:
file_ext = os.path.splitext(file_path)[1].lower()
# Parse document based on file type
if file_ext == '.pdf':
text = self.parse_pdf(file_path)
elif file_ext == '.pptx':
text = self.parse_pptx(file_path)
elif file_ext == '.csv':
text = self.parse_csv(file_path)
elif file_ext == '.docx':
text = self.parse_docx(file_path)
elif file_ext in ['.txt', '.md']:
text = self.parse_txt(file_path)
else:
logger.warning(f"Unsupported file type: {file_ext}")
continue
if text:
# Split text into chunks
chunks = self.text_splitter.split_text(text)
docs = [Document(page_content=chunk, metadata={"source": file_path})
for chunk in chunks]
processed_docs.extend(docs)
# Send processed documents to RetrievalAgent
response = MCPMessage(
sender=self.name,
receiver="RetrievalAgent",
msg_type="INGESTION_COMPLETE",
trace_id=message.trace_id,
payload={"documents": processed_docs}
)
self.message_bus.publish(response)
class RetrievalAgent:
"""Agent responsible for embedding and semantic retrieval"""
def __init__(self, message_bus: MessageBus):
self.name = "RetrievalAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
self.vector_store = None
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "INGESTION_COMPLETE":
self.create_vector_store(message)
elif message.type == "RETRIEVAL_REQUEST":
self.retrieve_context(message)
def create_vector_store(self, message: MCPMessage):
"""Create vector store from processed documents"""
documents = message.payload.get("documents", [])
if documents:
try:
self.vector_store = FAISS.from_documents(documents, embeddings)
logger.info(f"Vector store created with {len(documents)} documents")
# Notify completion
response = MCPMessage(
sender=self.name,
receiver="CoordinatorAgent",
msg_type="VECTORSTORE_READY",
trace_id=message.trace_id,
payload={"status": "ready"}
)
self.message_bus.publish(response)
except Exception as e:
logger.error(f"Error creating vector store: {e}")
def retrieve_context(self, message: MCPMessage):
"""Retrieve relevant context for a query"""
query = message.payload.get("query", "")
k = message.payload.get("k", 3)
if self.vector_store and query:
try:
docs = self.vector_store.similarity_search(query, k=k)
context = [{"content": doc.page_content, "source": doc.metadata.get("source", "")}
for doc in docs]
response = MCPMessage(
sender=self.name,
receiver="LLMResponseAgent",
msg_type="CONTEXT_RESPONSE",
trace_id=message.trace_id,
payload={
"query": query,
"retrieved_context": context,
"top_chunks": [doc.page_content for doc in docs]
}
)
self.message_bus.publish(response)
except Exception as e:
logger.error(f"Error retrieving context: {e}")
class LLMResponseAgent:
"""Agent responsible for generating LLM responses"""
def __init__(self, message_bus: MessageBus):
self.name = "LLMResponseAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "CONTEXT_RESPONSE":
self.generate_response(message)
def generate_response(self, message: MCPMessage):
"""Generate response using retrieved context"""
query = message.payload.get("query", "")
context = message.payload.get("retrieved_context", [])
# Build prompt with context
context_text = "\n\n".join([f"Source: {ctx['source']}\nContent: {ctx['content']}"
for ctx in context])
prompt = f"""Based on the following context, please answer the user's question accurately and comprehensively.
Context:
{context_text}
Question: {query}
Answer:"""
try:
# Generate streaming response
response_stream = client.text_generation(
prompt,
max_new_tokens=512,
temperature=0.7,
stream=True
)
# Send streaming response
response = MCPMessage(
sender=self.name,
receiver="CoordinatorAgent",
msg_type="LLM_RESPONSE_STREAM",
trace_id=message.trace_id,
payload={
"query": query,
"response_stream": response_stream,
"context": context
}
)
self.message_bus.publish(response)
except Exception as e:
logger.error(f"Error generating response: {e}")
class CoordinatorAgent:
"""Coordinator agent that orchestrates the entire workflow"""
def __init__(self, message_bus: MessageBus):
self.name = "CoordinatorAgent"
self.message_bus = message_bus
self.message_bus.subscribe(self.name, self.handle_message)
self.current_response_stream = None
self.vector_store_ready = False
def handle_message(self, message: MCPMessage):
"""Handle incoming MCP messages"""
if message.type == "VECTORSTORE_READY":
self.vector_store_ready = True
elif message.type == "LLM_RESPONSE_STREAM":
self.current_response_stream = message.payload.get("response_stream")
def process_files(self, files):
"""Process uploaded files"""
if not files:
return "No files uploaded."
file_paths = [file.name for file in files]
# Send ingestion request
message = MCPMessage(
sender=self.name,
receiver="IngestionAgent",
msg_type="INGESTION_REQUEST",
payload={"files": file_paths}
)
self.message_bus.publish(message)
return f"Processing {len(files)} files: {', '.join([os.path.basename(fp) for fp in file_paths])}"
def handle_query(self, query: str, history: List):
"""Handle user query and return streaming response"""
if not self.vector_store_ready:
yield "Please upload and process documents first."
return
# Send retrieval request
message = MCPMessage(
sender=self.name,
receiver="RetrievalAgent",
msg_type="RETRIEVAL_REQUEST",
payload={"query": query}
)
self.message_bus.publish(message)
# Wait for response and stream
import time
timeout = 10 # seconds
start_time = time.time()
while not self.current_response_stream and (time.time() - start_time) < timeout:
time.sleep(0.1)
if self.current_response_stream:
partial_response = ""
try:
for token in self.current_response_stream:
if token:
partial_response += token
yield partial_response
time.sleep(0.05) # Simulate streaming delay
except Exception as e:
yield f"Error generating response: {e}"
finally:
self.current_response_stream = None
else:
yield "Timeout: No response received from LLM agent."
# Initialize agents
ingestion_agent = IngestionAgent(message_bus)
retrieval_agent = RetrievalAgent(message_bus)
llm_response_agent = LLMResponseAgent(message_bus)
coordinator_agent = CoordinatorAgent(message_bus)
# Gradio Interface
def create_interface():
"""Create Gradio interface"""
with gr.Blocks(
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="purple"),
css="""
.gradio-container {
max-width: 1200px !important;
}
.header-text {
text-align: center;
color: #667eea;
font-size: 2.5em;
font-weight: bold;
margin-bottom: 10px;
}
.subheader-text {
text-align: center;
color: #666;
font-size: 1.2em;
margin-bottom: 20px;
}
.upload-section {
border: 2px dashed #667eea;
border-radius: 10px;
padding: 20px;
margin: 10px 0;
}
.chat-container {
height: 500px;
}
""",
title="π€ Agentic RAG Chatbot"
) as iface:
# Header
gr.HTML("""
<div class="header-text">π€ Agentic RAG Chatbot</div>
<div class="subheader-text">Multi-Format Document QA with Model Context Protocol (MCP)</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## π Document Upload")
file_upload = gr.File(
file_count="multiple",
file_types=[".pdf", ".pptx", ".csv", ".docx", ".txt", ".md"],
label="Upload Documents (PDF, PPTX, CSV, DOCX, TXT, MD)",
elem_classes=["upload-section"]
)
upload_status = gr.Textbox(
label="Upload Status",
interactive=False,
max_lines=3
)
process_btn = gr.Button(
"π Process Documents",
variant="primary",
size="lg"
)
gr.Markdown("## ποΈ Architecture Info")
gr.Markdown("""
**Agents:**
- π IngestionAgent: Document parsing
- π RetrievalAgent: Semantic search
- π€ LLMResponseAgent: Response generation
- π― CoordinatorAgent: Workflow orchestration
**MCP Communication:** Structured message passing between agents
""")
with gr.Column(scale=2):
gr.Markdown("## π¬ Chat Interface")
chatbot = gr.Chatbot(
height=500,
elem_classes=["chat-container"],
show_copy_button=True,
type="messages"
)
with gr.Row():
msg = gr.Textbox(
label="Ask a question about your documents...",
placeholder="What are the key findings in the uploaded documents?",
scale=4
)
submit_btn = gr.Button("Send π", scale=1, variant="primary")
gr.Examples(
examples=[
"What are the main topics discussed in the documents?",
"Can you summarize the key findings?",
"What metrics or KPIs are mentioned?",
"What recommendations are provided?",
"Are there any trends or patterns identified?"
],
inputs=msg
)
# Event handlers
def process_files_handler(files):
return coordinator_agent.process_files(files)
def respond(message, history):
if message.strip():
# Add user message to history
history.append([message, ""])
# Get streaming response
for response in coordinator_agent.handle_query(message, history):
history[-1][1] = response
yield history, ""
else:
yield history, message
process_btn.click(
process_files_handler,
inputs=[file_upload],
outputs=[upload_status]
)
submit_btn.click(
respond,
inputs=[msg, chatbot],
outputs=[chatbot, msg],
show_progress=True
)
msg.submit(
respond,
inputs=[msg, chatbot],
outputs=[chatbot, msg],
show_progress=True
)
return iface
# Launch the application
if __name__ == "__main__":
demo = create_interface()
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860
) |