LoGoSAM_demo / dataloaders /SimpleDataset.py
quandn2003's picture
Upload folder using huggingface_hub
427d150 verified
import torch
import numpy as np
import matplotlib.pyplot as plt
"""
simple dataset, gets the images and masks as list together with a transform function that
shoudl receive both the image and the mask.
loop means how many times to loop the dataset per epoch
"""
class SimpleDataset(torch.utils.data.Dataset):
def __init__(self, image_list, mask_list, transform=None, norm_func=None, loops=10, modality="", debug=False, image_size=None):
self.image_list = image_list
if image_size is not None:
if len(image_size) == 1:
image_size = (image_size, image_size)
self.image_size = image_size
else:
self.image_size = image_list[0].shape[-2:]
self.mask_list = mask_list
self.transform = transform
self.norm_func = norm_func
self.loops = loops
self.modality = modality
self.debug = debug
def __len__(self):
return len(self.image_list) * self.loops
def __getitem__(self, idx):
idx = idx % (len(self.image_list))
image = self.image_list[idx].numpy()
mask = self.mask_list[idx].to(dtype=torch.uint8).numpy()
if self.modality == "CT":
image = image.astype(np.uint8)
if self.transform:
image, mask = self.transform(image, mask)
else:
# mask = np.repeat(mask[..., np.newaxis], 3, axis=-1)
if self.transform:
image, mask = self.transform(image, mask)
if self.norm_func:
image = self.norm_func(image)
mask[mask != 0] = 1
if self.image_size != image.shape[-2:]:
image = torch.nn.functional.interpolate(torch.tensor(image).unsqueeze(0), self.image_size, mode='bilinear').squeeze(0)
mask = torch.nn.functional.interpolate(torch.tensor(mask).unsqueeze(0).unsqueeze(0), self.image_size, mode='nearest').squeeze(0).squeeze(0)
# plot image and mask
if self.debug:
fig = plt.figure()
plt.imshow((image[0]- image.min()) / (image.max() - image.min()))
plt.imshow(mask, alpha=0.5)
plt.savefig("debug/support_image_mask.png")
plt.close(fig)
image_size = torch.tensor(tuple(image.shape[-2:]))
return image, mask