Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
import matplotlib.pyplot as plt | |
""" | |
simple dataset, gets the images and masks as list together with a transform function that | |
shoudl receive both the image and the mask. | |
loop means how many times to loop the dataset per epoch | |
""" | |
class SimpleDataset(torch.utils.data.Dataset): | |
def __init__(self, image_list, mask_list, transform=None, norm_func=None, loops=10, modality="", debug=False, image_size=None): | |
self.image_list = image_list | |
if image_size is not None: | |
if len(image_size) == 1: | |
image_size = (image_size, image_size) | |
self.image_size = image_size | |
else: | |
self.image_size = image_list[0].shape[-2:] | |
self.mask_list = mask_list | |
self.transform = transform | |
self.norm_func = norm_func | |
self.loops = loops | |
self.modality = modality | |
self.debug = debug | |
def __len__(self): | |
return len(self.image_list) * self.loops | |
def __getitem__(self, idx): | |
idx = idx % (len(self.image_list)) | |
image = self.image_list[idx].numpy() | |
mask = self.mask_list[idx].to(dtype=torch.uint8).numpy() | |
if self.modality == "CT": | |
image = image.astype(np.uint8) | |
if self.transform: | |
image, mask = self.transform(image, mask) | |
else: | |
# mask = np.repeat(mask[..., np.newaxis], 3, axis=-1) | |
if self.transform: | |
image, mask = self.transform(image, mask) | |
if self.norm_func: | |
image = self.norm_func(image) | |
mask[mask != 0] = 1 | |
if self.image_size != image.shape[-2:]: | |
image = torch.nn.functional.interpolate(torch.tensor(image).unsqueeze(0), self.image_size, mode='bilinear').squeeze(0) | |
mask = torch.nn.functional.interpolate(torch.tensor(mask).unsqueeze(0).unsqueeze(0), self.image_size, mode='nearest').squeeze(0).squeeze(0) | |
# plot image and mask | |
if self.debug: | |
fig = plt.figure() | |
plt.imshow((image[0]- image.min()) / (image.max() - image.min())) | |
plt.imshow(mask, alpha=0.5) | |
plt.savefig("debug/support_image_mask.png") | |
plt.close(fig) | |
image_size = torch.tensor(tuple(image.shape[-2:])) | |
return image, mask |