import torch import numpy as np import matplotlib.pyplot as plt """ simple dataset, gets the images and masks as list together with a transform function that shoudl receive both the image and the mask. loop means how many times to loop the dataset per epoch """ class SimpleDataset(torch.utils.data.Dataset): def __init__(self, image_list, mask_list, transform=None, norm_func=None, loops=10, modality="", debug=False, image_size=None): self.image_list = image_list if image_size is not None: if len(image_size) == 1: image_size = (image_size, image_size) self.image_size = image_size else: self.image_size = image_list[0].shape[-2:] self.mask_list = mask_list self.transform = transform self.norm_func = norm_func self.loops = loops self.modality = modality self.debug = debug def __len__(self): return len(self.image_list) * self.loops def __getitem__(self, idx): idx = idx % (len(self.image_list)) image = self.image_list[idx].numpy() mask = self.mask_list[idx].to(dtype=torch.uint8).numpy() if self.modality == "CT": image = image.astype(np.uint8) if self.transform: image, mask = self.transform(image, mask) else: # mask = np.repeat(mask[..., np.newaxis], 3, axis=-1) if self.transform: image, mask = self.transform(image, mask) if self.norm_func: image = self.norm_func(image) mask[mask != 0] = 1 if self.image_size != image.shape[-2:]: image = torch.nn.functional.interpolate(torch.tensor(image).unsqueeze(0), self.image_size, mode='bilinear').squeeze(0) mask = torch.nn.functional.interpolate(torch.tensor(mask).unsqueeze(0).unsqueeze(0), self.image_size, mode='nearest').squeeze(0).squeeze(0) # plot image and mask if self.debug: fig = plt.figure() plt.imshow((image[0]- image.min()) / (image.max() - image.min())) plt.imshow(mask, alpha=0.5) plt.savefig("debug/support_image_mask.png") plt.close(fig) image_size = torch.tensor(tuple(image.shape[-2:])) return image, mask