Spaces:
Sleeping
Sleeping
from __future__ import division | |
import torch | |
import math | |
import sys | |
import random | |
from PIL import Image | |
try: | |
import accimage | |
except ImportError: | |
accimage = None | |
import numpy as np | |
import numbers | |
import types | |
import collections | |
import warnings | |
from torchvision.transforms import functional as F | |
if sys.version_info < (3, 3): | |
Sequence = collections.Sequence | |
Iterable = collections.Iterable | |
else: | |
Sequence = collections.abc.Sequence | |
Iterable = collections.abc.Iterable | |
__all__ = ["Compose", "ToTensor", "ToPILImage", "Normalize", "Resize", "CenterCrop", "Pad", | |
"Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop", "RandomHorizontalFlip", | |
"RandomVerticalFlip", "RandomResizedCrop", "FiveCrop", "TenCrop", | |
"ColorJitter", "RandomRotation", "RandomAffine", | |
"RandomPerspective"] | |
_pil_interpolation_to_str = { | |
Image.NEAREST: 'PIL.Image.NEAREST', | |
Image.BILINEAR: 'PIL.Image.BILINEAR', | |
Image.BICUBIC: 'PIL.Image.BICUBIC', | |
Image.LANCZOS: 'PIL.Image.LANCZOS', | |
Image.HAMMING: 'PIL.Image.HAMMING', | |
Image.BOX: 'PIL.Image.BOX', | |
} | |
class Compose(object): | |
def __init__(self, transforms): | |
self.transforms = transforms | |
def __call__(self, img, mask): | |
for t in self.transforms: | |
img, mask = t(img, mask) | |
return img, mask | |
class ToTensor(object): | |
def __call__(self, img, mask): | |
# return F.to_tensor(img), F.to_tensor(mask) | |
img = np.array(img) | |
img = torch.from_numpy(img).permute(2, 0, 1).float() # TODO add division by 255 to match torch.ToTensor()? | |
mask = torch.from_numpy(np.array(mask)).float() | |
return img, mask | |
class ToPILImage(object): | |
def __init__(self, mode=None): | |
self.mode = mode | |
def __call__(self, img, mask): | |
return F.to_pil_image(img, self.mode), F.to_pil_image(mask, self.mode) | |
class Normalize(object): | |
def __init__(self, mean, std, inplace=False): | |
self.mean = mean | |
self.std = std | |
self.inplace = inplace | |
def __call__(self, img, mask): | |
return F.normalize(img, self.mean, self.std, self.inplace), mask | |
class Resize(object): | |
def __init__(self, size, interpolation=Image.BILINEAR, do_mask=True): | |
assert isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2) | |
self.size = size | |
self.interpolation = interpolation | |
self.do_mask = do_mask | |
def __call__(self, img, mask): | |
if self.do_mask: | |
return F.resize(img, self.size, Image.BICUBIC), F.resize(mask, self.size, Image.BICUBIC) | |
else: | |
return F.resize(img, self.size, Image.BICUBIC), mask | |
class CenterCrop(object): | |
def __init__(self, size): | |
if isinstance(size, numbers.Number): | |
self.size = (int(size), int(size)) | |
else: | |
self.size = size | |
def __call__(self, img, mask): | |
return F.center_crop(img, self.size), F.center_crop(mask, self.size) | |
class Pad(object): | |
def __init__(self, padding, fill=0, padding_mode='constant'): | |
assert isinstance(padding, (numbers.Number, tuple)) | |
assert isinstance(fill, (numbers.Number, str, tuple)) | |
assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'] | |
if isinstance(padding, Sequence) and len(padding) not in [2, 4]: | |
raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " + | |
"{} element tuple".format(len(padding))) | |
self.padding = padding | |
self.fill = fill | |
self.padding_mode = padding_mode | |
def __call__(self, img, mask): | |
return F.pad(img, self.padding, self.fill, self.padding_mode), \ | |
F.pad(mask, self.padding, self.fill, self.padding_mode) | |
class Lambda(object): | |
def __init__(self, lambd): | |
assert callable(lambd), repr(type(lambd).__name__) + " object is not callable" | |
self.lambd = lambd | |
def __call__(self, img, mask): | |
return self.lambd(img), self.lambd(mask) | |
class Lambda_image(object): | |
def __init__(self, lambd): | |
assert callable(lambd), repr(type(lambd).__name__) + " object is not callable" | |
self.lambd = lambd | |
def __call__(self, img, mask): | |
return self.lambd(img), mask | |
class RandomTransforms(object): | |
def __init__(self, transforms): | |
assert isinstance(transforms, (list, tuple)) | |
self.transforms = transforms | |
def __call__(self, *args, **kwargs): | |
raise NotImplementedError() | |
class RandomApply(RandomTransforms): | |
def __init__(self, transforms, p=0.5): | |
super(RandomApply, self).__init__(transforms) | |
self.p = p | |
def __call__(self, img, mask): | |
if self.p < random.random(): | |
return img, mask | |
for t in self.transforms: | |
img, mask = t(img, mask) | |
return img, mask | |
class RandomOrder(RandomTransforms): | |
def __call__(self, img, mask): | |
order = list(range(len(self.transforms))) | |
random.shuffle(order) | |
for i in order: | |
img, mask = self.transforms[i](img, mask) | |
return img, mask | |
class RandomChoice(RandomTransforms): | |
def __call__(self, img, mask): | |
t = random.choice(self.transforms) | |
return t(img, mask) | |
class RandomCrop(object): | |
def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant'): | |
if isinstance(size, numbers.Number): | |
self.size = (int(size), int(size)) | |
else: | |
self.size = size | |
self.padding = padding | |
self.pad_if_needed = pad_if_needed | |
self.fill = fill | |
self.padding_mode = padding_mode | |
def get_params(img, output_size): | |
w, h = img.size | |
th, tw = output_size | |
if w == tw and h == th: | |
return 0, 0, h, w | |
i = random.randint(0, h - th) | |
j = random.randint(0, w - tw) | |
return i, j, th, tw | |
def __call__(self, img, mask): | |
if self.padding is not None: | |
img = F.pad(img, self.padding, self.fill, self.padding_mode) | |
# pad the width if needed | |
if self.pad_if_needed and img.size[0] < self.size[1]: | |
img = F.pad(img, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode) | |
# pad the height if needed | |
if self.pad_if_needed and img.size[1] < self.size[0]: | |
img = F.pad(img, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode) | |
i, j, h, w = self.get_params(img, self.size) | |
return F.crop(img, i, j, h, w), F.crop(mask, i, j, h, w) | |
class RandomHorizontalFlip(object): | |
def __init__(self, p=0.5): | |
self.p = p | |
def __call__(self, img, mask): | |
if random.random() < self.p: | |
return F.hflip(img), F.hflip(mask) | |
return img, mask | |
class RandomVerticalFlip(object): | |
def __init__(self, p=0.5): | |
self.p = p | |
def __call__(self, img, mask): | |
if random.random() < self.p: | |
return F.vflip(img), F.vflip(mask) | |
return img, mask | |
class RandomPerspective(object): | |
def __init__(self, distortion_scale=0.5, p=0.5, interpolation=Image.BICUBIC): | |
self.p = p | |
self.interpolation = interpolation | |
self.distortion_scale = distortion_scale | |
def __call__(self, img, mask): | |
if not F._is_pil_image(img): | |
raise TypeError('img should be PIL Image. Got {}'.format(type(img))) | |
if random.random() < self.p: | |
width, height = img.size | |
startpoints, endpoints = self.get_params(width, height, self.distortion_scale) | |
return F.perspective(img, startpoints, endpoints, self.interpolation), \ | |
F.perspective(mask, startpoints, endpoints, Image.NEAREST) | |
return img, mask | |
def get_params(width, height, distortion_scale): | |
half_height = int(height / 2) | |
half_width = int(width / 2) | |
topleft = (random.randint(0, int(distortion_scale * half_width)), | |
random.randint(0, int(distortion_scale * half_height))) | |
topright = (random.randint(width - int(distortion_scale * half_width) - 1, width - 1), | |
random.randint(0, int(distortion_scale * half_height))) | |
botright = (random.randint(width - int(distortion_scale * half_width) - 1, width - 1), | |
random.randint(height - int(distortion_scale * half_height) - 1, height - 1)) | |
botleft = (random.randint(0, int(distortion_scale * half_width)), | |
random.randint(height - int(distortion_scale * half_height) - 1, height - 1)) | |
startpoints = [(0, 0), (width - 1, 0), (width - 1, height - 1), (0, height - 1)] | |
endpoints = [topleft, topright, botright, botleft] | |
return startpoints, endpoints | |
class RandomResizedCrop(object): | |
def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR): | |
if isinstance(size, tuple): | |
self.size = size | |
else: | |
self.size = (size, size) | |
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): | |
warnings.warn("range should be of kind (min, max)") | |
self.interpolation = interpolation | |
self.scale = scale | |
self.ratio = ratio | |
def get_params(img, scale, ratio): | |
area = img.size[0] * img.size[1] | |
for attempt in range(10): | |
target_area = random.uniform(*scale) * area | |
log_ratio = (math.log(ratio[0]), math.log(ratio[1])) | |
aspect_ratio = math.exp(random.uniform(*log_ratio)) | |
w = int(round(math.sqrt(target_area * aspect_ratio))) | |
h = int(round(math.sqrt(target_area / aspect_ratio))) | |
if w <= img.size[0] and h <= img.size[1]: | |
i = random.randint(0, img.size[1] - h) | |
j = random.randint(0, img.size[0] - w) | |
return i, j, h, w | |
# Fallback to central crop | |
in_ratio = img.size[0] / img.size[1] | |
if (in_ratio < min(ratio)): | |
w = img.size[0] | |
h = w / min(ratio) | |
elif (in_ratio > max(ratio)): | |
h = img.size[1] | |
w = h * max(ratio) | |
else: # whole image | |
w = img.size[0] | |
h = img.size[1] | |
i = (img.size[1] - h) // 2 | |
j = (img.size[0] - w) // 2 | |
return i, j, h, w | |
def __call__(self, img, mask): | |
i, j, h, w = self.get_params(img, self.scale, self.ratio) | |
return F.resized_crop(img, i, j, h, w, self.size, self.interpolation), \ | |
F.resized_crop(mask, i, j, h, w, self.size, Image.NEAREST) | |
class FiveCrop(object): | |
def __init__(self, size): | |
self.size = size | |
if isinstance(size, numbers.Number): | |
self.size = (int(size), int(size)) | |
else: | |
assert len(size) == 2, "Please provide only two dimensions (h, w) for size." | |
self.size = size | |
def __call__(self, img, mask): | |
return F.five_crop(img, self.size), F.five_crop(mask, self.size) | |
class TenCrop(object): | |
def __init__(self, size, vertical_flip=False): | |
self.size = size | |
if isinstance(size, numbers.Number): | |
self.size = (int(size), int(size)) | |
else: | |
assert len(size) == 2, "Please provide only two dimensions (h, w) for size." | |
self.size = size | |
self.vertical_flip = vertical_flip | |
def __call__(self, img, mask): | |
return F.ten_crop(img, self.size, self.vertical_flip), F.ten_crop(mask, self.size, self.vertical_flip) | |
class ColorJitter(object): | |
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0): | |
self.brightness = self._check_input(brightness, 'brightness') | |
self.contrast = self._check_input(contrast, 'contrast') | |
self.saturation = self._check_input(saturation, 'saturation') | |
self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5), | |
clip_first_on_zero=False) | |
def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True): | |
if isinstance(value, numbers.Number): | |
if value < 0: | |
raise ValueError("If {} is a single number, it must be non negative.".format(name)) | |
value = [center - value, center + value] | |
if clip_first_on_zero: | |
value[0] = max(value[0], 0) | |
elif isinstance(value, (tuple, list)) and len(value) == 2: | |
if not bound[0] <= value[0] <= value[1] <= bound[1]: | |
raise ValueError("{} values should be between {}".format(name, bound)) | |
else: | |
raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name)) | |
# if value is 0 or (1., 1.) for brightness/contrast/saturation | |
# or (0., 0.) for hue, do nothing | |
if value[0] == value[1] == center: | |
value = None | |
return value | |
def get_params(brightness, contrast, saturation, hue): | |
transforms = [] | |
if brightness is not None: | |
brightness_factor = random.uniform(brightness[0], brightness[1]) | |
transforms.append(Lambda_image(lambda img: F.adjust_brightness(img, brightness_factor))) | |
if contrast is not None: | |
contrast_factor = random.uniform(contrast[0], contrast[1]) | |
transforms.append(Lambda_image(lambda img: F.adjust_contrast(img, contrast_factor))) | |
if saturation is not None: | |
saturation_factor = random.uniform(saturation[0], saturation[1]) | |
transforms.append(Lambda_image(lambda img: F.adjust_saturation(img, saturation_factor))) | |
if hue is not None: | |
hue_factor = random.uniform(hue[0], hue[1]) | |
transforms.append(Lambda_image(lambda img: F.adjust_hue(img, hue_factor))) | |
random.shuffle(transforms) | |
transform = Compose(transforms) | |
return transform | |
def __call__(self, img, mask): | |
transform = self.get_params(self.brightness, self.contrast, | |
self.saturation, self.hue) | |
return transform(img, mask) | |
class RandomRotation(object): | |
def __init__(self, degrees, resample=False, expand=False, center=None): | |
if isinstance(degrees, numbers.Number): | |
if degrees < 0: | |
raise ValueError("If degrees is a single number, it must be positive.") | |
self.degrees = (-degrees, degrees) | |
else: | |
if len(degrees) != 2: | |
raise ValueError("If degrees is a sequence, it must be of len 2.") | |
self.degrees = degrees | |
self.resample = resample | |
self.expand = expand | |
self.center = center | |
def get_params(degrees): | |
angle = random.uniform(degrees[0], degrees[1]) | |
return angle | |
def __call__(self, img, mask): | |
angle = self.get_params(self.degrees) | |
return F.rotate(img, angle, Image.BILINEAR, self.expand, self.center), \ | |
F.rotate(mask, angle, Image.NEAREST, self.expand, self.center) | |
class RandomAffine(object): | |
def __init__(self, degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0): | |
if isinstance(degrees, numbers.Number): | |
if degrees < 0: | |
raise ValueError("If degrees is a single number, it must be positive.") | |
self.degrees = (-degrees, degrees) | |
else: | |
assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \ | |
"degrees should be a list or tuple and it must be of length 2." | |
self.degrees = degrees | |
if translate is not None: | |
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \ | |
"translate should be a list or tuple and it must be of length 2." | |
for t in translate: | |
if not (0.0 <= t <= 1.0): | |
raise ValueError("translation values should be between 0 and 1") | |
self.translate = translate | |
if scale is not None: | |
assert isinstance(scale, (tuple, list)) and len(scale) == 2, \ | |
"scale should be a list or tuple and it must be of length 2." | |
for s in scale: | |
if s <= 0: | |
raise ValueError("scale values should be positive") | |
self.scale = scale | |
if shear is not None: | |
if isinstance(shear, numbers.Number): | |
if shear < 0: | |
raise ValueError("If shear is a single number, it must be positive.") | |
self.shear = (-shear, shear) | |
else: | |
assert isinstance(shear, (tuple, list)) and len(shear) == 2, \ | |
"shear should be a list or tuple and it must be of length 2." | |
self.shear = shear | |
else: | |
self.shear = shear | |
self.resample = resample | |
self.fillcolor = fillcolor | |
def get_params(degrees, translate, scale_ranges, shears, img_size): | |
angle = random.uniform(degrees[0], degrees[1]) | |
if translate is not None: | |
max_dx = translate[0] * img_size[0] | |
max_dy = translate[1] * img_size[1] | |
translations = (np.round(random.uniform(-max_dx, max_dx)), | |
np.round(random.uniform(-max_dy, max_dy))) | |
else: | |
translations = (0, 0) | |
if scale_ranges is not None: | |
scale = random.uniform(scale_ranges[0], scale_ranges[1]) | |
else: | |
scale = 1.0 | |
if shears is not None: | |
shear = random.uniform(shears[0], shears[1]) | |
else: | |
shear = 0.0 | |
return angle, translations, scale, shear | |
def __call__(self, img, mask): | |
ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img.size) | |
return F.affine(img, *ret, interpolation=Image.BILINEAR, fill=self.fillcolor), \ | |
F.affine(mask, *ret, interpolation=Image.NEAREST, fill=self.fillcolor) | |
def get_cub_transform(): | |
transform_train = Compose([ | |
ToPILImage(), | |
Resize((256, 256)), | |
RandomHorizontalFlip(), | |
RandomAffine(22, scale=(0.75, 1.25)), | |
ToTensor(), | |
Normalize(mean=[255*0.485, 255*0.456, 255*0.406], std=[255*0.229, 255*0.224, 255*0.225]) | |
]) | |
transform_test = Compose([ | |
ToPILImage(), | |
Resize((256, 256)), | |
ToTensor(), | |
Normalize(mean=[255*0.485, 255*0.456, 255*0.406], std=[255*0.229, 255*0.224, 255*0.225]) | |
]) | |
return transform_train, transform_test | |
def get_glas_transform(): | |
transform_train = Compose([ | |
ToPILImage(), | |
# Resize((256, 256)), | |
ColorJitter(brightness=0.2, | |
contrast=0.2, | |
saturation=0.2, | |
hue=0.1), | |
RandomHorizontalFlip(), | |
RandomAffine(5, scale=(0.75, 1.25)), | |
ToTensor(), | |
# Normalize(mean=[255*0.485, 255*0.456, 255*0.406], std=[255*0.229, 255*0.224, 255*0.225]) | |
]) | |
transform_test = Compose([ | |
ToPILImage(), | |
# Resize((256, 256)), | |
ToTensor(), | |
# Normalize(mean=[255*0.485, 255*0.456, 255*0.406], std=[255*0.229, 255*0.224, 255*0.225]) | |
]) | |
return transform_train, transform_test | |
# def get_glas_transform(): | |
# transform_train = Compose([ | |
# ToPILImage(), | |
# Resize((256, 256)), | |
# ColorJitter(brightness=0.2, | |
# contrast=0.2, | |
# saturation=0.2, | |
# hue=0.1), | |
# RandomHorizontalFlip(), | |
# RandomAffine(5, scale=(0.75, 1.25)), | |
# ToTensor(), | |
# Normalize(mean=[255*0.485, 255*0.456, 255*0.406], std=[255*0.229, 255*0.224, 255*0.225]) | |
# ]) | |
# transform_test = Compose([ | |
# ToPILImage(), | |
# Resize((256, 256)), | |
# ToTensor(), | |
# Normalize(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]) | |
# ]) | |
# return transform_train, transform_test | |
def get_monu_transform(args): | |
Idim = int(args['Idim']) | |
transform_train = Compose([ | |
ToPILImage(), | |
# Resize((Idim, Idim)), | |
ColorJitter(brightness=0.4, | |
contrast=0.4, | |
saturation=0.4, | |
hue=0.1), | |
RandomHorizontalFlip(), | |
RandomAffine(int(args['rotate']), scale=(float(args['scale1']), float(args['scale2']))), | |
ToTensor(), | |
# Normalize(mean=[142.07, 98.48, 132.96], std=[65.78, 57.05, 57.78]) | |
]) | |
transform_test = Compose([ | |
ToPILImage(), | |
# Resize((Idim, Idim)), | |
ToTensor(), | |
# Normalize(mean=[142.07, 98.48, 132.96], std=[65.78, 57.05, 57.78]) | |
]) | |
return transform_train, transform_test | |
def get_polyp_transform(): | |
transform_train = Compose([ | |
# Resize((352, 352)), | |
ToPILImage(), | |
ColorJitter(brightness=0.4, | |
contrast=0.4, | |
saturation=0.4, | |
hue=0.1), | |
RandomVerticalFlip(), | |
RandomHorizontalFlip(), | |
RandomAffine(90, scale=(0.75, 1.25)), | |
ToTensor(), | |
# Normalize([105.61, 63.69, 45.67], | |
# [83.08, 55.86, 42.59]) | |
]) | |
transform_test = Compose([ | |
# Resize((352, 352)), | |
ToPILImage(), | |
ToTensor(), | |
# Normalize([105.61, 63.69, 45.67], | |
# [83.08, 55.86, 42.59]) | |
]) | |
return transform_train, transform_test | |
def get_polyp_support_train_transform(): | |
transform_train = Compose([ | |
ColorJitter(brightness=0.4, | |
contrast=0.4, | |
saturation=0.4, | |
hue=0.1), | |
RandomVerticalFlip(), | |
RandomHorizontalFlip(), | |
RandomAffine(90, scale=(0.75, 1.25)), | |
]) | |
return transform_train |