File size: 22,691 Bytes
427d150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
from __future__ import division
import torch
import math
import sys
import random
from PIL import Image

try:
    import accimage
except ImportError:
    accimage = None
import numpy as np
import numbers
import types
import collections
import warnings

from torchvision.transforms import functional as F

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

__all__ = ["Compose", "ToTensor", "ToPILImage", "Normalize", "Resize", "CenterCrop", "Pad",
           "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop", "RandomHorizontalFlip",
           "RandomVerticalFlip", "RandomResizedCrop", "FiveCrop", "TenCrop",
           "ColorJitter", "RandomRotation", "RandomAffine",
           "RandomPerspective"]

_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
    Image.HAMMING: 'PIL.Image.HAMMING',
    Image.BOX: 'PIL.Image.BOX',
}


class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img, mask):
        for t in self.transforms:
            img, mask = t(img, mask)
        return img, mask


class ToTensor(object):
    def __call__(self, img, mask):
        # return F.to_tensor(img), F.to_tensor(mask)
        img = np.array(img)
        img = torch.from_numpy(img).permute(2, 0, 1).float() # TODO add division by 255 to match torch.ToTensor()?
        mask = torch.from_numpy(np.array(mask)).float()
        return img, mask


class ToPILImage(object):
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, img, mask):
        return F.to_pil_image(img, self.mode), F.to_pil_image(mask, self.mode)


class Normalize(object):
    def __init__(self, mean, std, inplace=False):
        self.mean = mean
        self.std = std
        self.inplace = inplace

    def __call__(self, img, mask):
        return F.normalize(img, self.mean, self.std, self.inplace), mask


class Resize(object):
    def __init__(self, size, interpolation=Image.BILINEAR, do_mask=True):
        assert isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)
        self.size = size
        self.interpolation = interpolation
        self.do_mask = do_mask

    def __call__(self, img, mask):
        if self.do_mask:
            return F.resize(img, self.size, Image.BICUBIC), F.resize(mask, self.size, Image.BICUBIC)
        else:
            return F.resize(img, self.size, Image.BICUBIC), mask


class CenterCrop(object):
    def __init__(self, size):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size

    def __call__(self, img, mask):
        return F.center_crop(img, self.size), F.center_crop(mask, self.size)


class Pad(object):
    def __init__(self, padding, fill=0, padding_mode='constant'):
        assert isinstance(padding, (numbers.Number, tuple))
        assert isinstance(fill, (numbers.Number, str, tuple))
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
            raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " +
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

    def __call__(self, img, mask):
        return F.pad(img, self.padding, self.fill, self.padding_mode), \
               F.pad(mask, self.padding, self.fill, self.padding_mode)


class Lambda(object):
    def __init__(self, lambd):
        assert callable(lambd), repr(type(lambd).__name__) + " object is not callable"
        self.lambd = lambd

    def __call__(self, img, mask):
        return self.lambd(img), self.lambd(mask)


class Lambda_image(object):
    def __init__(self, lambd):
        assert callable(lambd), repr(type(lambd).__name__) + " object is not callable"
        self.lambd = lambd

    def __call__(self, img, mask):
        return self.lambd(img), mask


class RandomTransforms(object):
    def __init__(self, transforms):
        assert isinstance(transforms, (list, tuple))
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()


class RandomApply(RandomTransforms):
    def __init__(self, transforms, p=0.5):
        super(RandomApply, self).__init__(transforms)
        self.p = p

    def __call__(self, img, mask):
        if self.p < random.random():
            return img, mask
        for t in self.transforms:
            img, mask = t(img, mask)
        return img, mask


class RandomOrder(RandomTransforms):
    def __call__(self, img, mask):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img, mask = self.transforms[i](img, mask)
        return img, mask


class RandomChoice(RandomTransforms):
    def __call__(self, img, mask):
        t = random.choice(self.transforms)
        return t(img, mask)


class RandomCrop(object):
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant'):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    @staticmethod
    def get_params(img, output_size):
        w, h = img.size
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
        return i, j, th, tw

    def __call__(self, img, mask):
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)

        # pad the width if needed
        if self.pad_if_needed and img.size[0] < self.size[1]:
            img = F.pad(img, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode)
        # pad the height if needed
        if self.pad_if_needed and img.size[1] < self.size[0]:
            img = F.pad(img, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode)

        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w), F.crop(mask, i, j, h, w)


class RandomHorizontalFlip(object):
    def __init__(self, p=0.5):
        self.p = p

    def __call__(self, img, mask):
        if random.random() < self.p:
            return F.hflip(img), F.hflip(mask)
        return img, mask


class RandomVerticalFlip(object):
    def __init__(self, p=0.5):
        self.p = p

    def __call__(self, img, mask):
        if random.random() < self.p:
            return F.vflip(img), F.vflip(mask)
        return img, mask


class RandomPerspective(object):
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=Image.BICUBIC):
        self.p = p
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale

    def __call__(self, img, mask):
        if not F._is_pil_image(img):
            raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

        if random.random() < self.p:
            width, height = img.size
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
            return F.perspective(img, startpoints, endpoints, self.interpolation), \
                   F.perspective(mask, startpoints, endpoints, Image.NEAREST)
        return img, mask

    @staticmethod
    def get_params(width, height, distortion_scale):
        half_height = int(height / 2)
        half_width = int(width / 2)
        topleft = (random.randint(0, int(distortion_scale * half_width)),
                   random.randint(0, int(distortion_scale * half_height)))
        topright = (random.randint(width - int(distortion_scale * half_width) - 1, width - 1),
                    random.randint(0, int(distortion_scale * half_height)))
        botright = (random.randint(width - int(distortion_scale * half_width) - 1, width - 1),
                    random.randint(height - int(distortion_scale * half_height) - 1, height - 1))
        botleft = (random.randint(0, int(distortion_scale * half_width)),
                   random.randint(height - int(distortion_scale * half_height) - 1, height - 1))
        startpoints = [(0, 0), (width - 1, 0), (width - 1, height - 1), (0, height - 1)]
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints


class RandomResizedCrop(object):
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
        if isinstance(size, tuple):
            self.size = size
        else:
            self.size = (size, size)
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("range should be of kind (min, max)")

        self.interpolation = interpolation
        self.scale = scale
        self.ratio = ratio

    @staticmethod
    def get_params(img, scale, ratio):
        area = img.size[0] * img.size[1]

        for attempt in range(10):
            target_area = random.uniform(*scale) * area
            log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
            aspect_ratio = math.exp(random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if w <= img.size[0] and h <= img.size[1]:
                i = random.randint(0, img.size[1] - h)
                j = random.randint(0, img.size[0] - w)
                return i, j, h, w

        # Fallback to central crop
        in_ratio = img.size[0] / img.size[1]
        if (in_ratio < min(ratio)):
            w = img.size[0]
            h = w / min(ratio)
        elif (in_ratio > max(ratio)):
            h = img.size[1]
            w = h * max(ratio)
        else:  # whole image
            w = img.size[0]
            h = img.size[1]
        i = (img.size[1] - h) // 2
        j = (img.size[0] - w) // 2
        return i, j, h, w

    def __call__(self, img, mask):
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation), \
               F.resized_crop(mask, i, j, h, w, self.size, Image.NEAREST)


class FiveCrop(object):
    def __init__(self, size):
        self.size = size
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
            self.size = size

    def __call__(self, img, mask):
        return F.five_crop(img, self.size), F.five_crop(mask, self.size)


class TenCrop(object):
    def __init__(self, size, vertical_flip=False):
        self.size = size
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
            self.size = size
        self.vertical_flip = vertical_flip

    def __call__(self, img, mask):
        return F.ten_crop(img, self.size, self.vertical_flip), F.ten_crop(mask, self.size, self.vertical_flip)


class ColorJitter(object):
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
            value = [center - value, center + value]
            if clip_first_on_zero:
                value[0] = max(value[0], 0)
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value

    @staticmethod
    def get_params(brightness, contrast, saturation, hue):
        transforms = []

        if brightness is not None:
            brightness_factor = random.uniform(brightness[0], brightness[1])
            transforms.append(Lambda_image(lambda img: F.adjust_brightness(img, brightness_factor)))

        if contrast is not None:
            contrast_factor = random.uniform(contrast[0], contrast[1])
            transforms.append(Lambda_image(lambda img: F.adjust_contrast(img, contrast_factor)))

        if saturation is not None:
            saturation_factor = random.uniform(saturation[0], saturation[1])
            transforms.append(Lambda_image(lambda img: F.adjust_saturation(img, saturation_factor)))

        if hue is not None:
            hue_factor = random.uniform(hue[0], hue[1])
            transforms.append(Lambda_image(lambda img: F.adjust_hue(img, hue_factor)))

        random.shuffle(transforms)
        transform = Compose(transforms)

        return transform

    def __call__(self, img, mask):
        transform = self.get_params(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img, mask)


class RandomRotation(object):
    def __init__(self, degrees, resample=False, expand=False, center=None):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError("If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

        self.resample = resample
        self.expand = expand
        self.center = center

    @staticmethod
    def get_params(degrees):
        angle = random.uniform(degrees[0], degrees[1])

        return angle

    def __call__(self, img, mask):
        angle = self.get_params(self.degrees)

        return F.rotate(img, angle, Image.BILINEAR, self.expand, self.center), \
               F.rotate(mask, angle, Image.NEAREST, self.expand, self.center)


class RandomAffine(object):
    def __init__(self, degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
                "degrees should be a list or tuple and it must be of length 2."
            self.degrees = degrees

        if translate is not None:
            assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
                "translate should be a list or tuple and it must be of length 2."
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
            assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
                "scale should be a list or tuple and it must be of length 2."
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            if isinstance(shear, numbers.Number):
                if shear < 0:
                    raise ValueError("If shear is a single number, it must be positive.")
                self.shear = (-shear, shear)
            else:
                assert isinstance(shear, (tuple, list)) and len(shear) == 2, \
                    "shear should be a list or tuple and it must be of length 2."
                self.shear = shear
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor

    @staticmethod
    def get_params(degrees, translate, scale_ranges, shears, img_size):
        angle = random.uniform(degrees[0], degrees[1])
        if translate is not None:
            max_dx = translate[0] * img_size[0]
            max_dy = translate[1] * img_size[1]
            translations = (np.round(random.uniform(-max_dx, max_dx)),
                            np.round(random.uniform(-max_dy, max_dy)))
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = random.uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        if shears is not None:
            shear = random.uniform(shears[0], shears[1])
        else:
            shear = 0.0

        return angle, translations, scale, shear

    def __call__(self, img, mask):
        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img.size)
        return F.affine(img, *ret, interpolation=Image.BILINEAR, fill=self.fillcolor), \
               F.affine(mask, *ret, interpolation=Image.NEAREST, fill=self.fillcolor)



def get_cub_transform():
    transform_train = Compose([
        ToPILImage(),
        Resize((256, 256)),
        RandomHorizontalFlip(),
        RandomAffine(22, scale=(0.75, 1.25)),
        ToTensor(),
        Normalize(mean=[255*0.485, 255*0.456, 255*0.406], std=[255*0.229, 255*0.224, 255*0.225])
    ])
    transform_test = Compose([
        ToPILImage(),
        Resize((256, 256)),
        ToTensor(),
        Normalize(mean=[255*0.485, 255*0.456, 255*0.406], std=[255*0.229, 255*0.224, 255*0.225])
    ])
    return transform_train, transform_test


def get_glas_transform():
    transform_train = Compose([
        ToPILImage(),
        # Resize((256, 256)),
        ColorJitter(brightness=0.2,
                               contrast=0.2,
                               saturation=0.2,
                               hue=0.1),
        RandomHorizontalFlip(),
        RandomAffine(5, scale=(0.75, 1.25)),
        ToTensor(),
        # Normalize(mean=[255*0.485, 255*0.456, 255*0.406], std=[255*0.229, 255*0.224, 255*0.225])
    ])
    transform_test = Compose([
        ToPILImage(),
        # Resize((256, 256)),
        ToTensor(),
        # Normalize(mean=[255*0.485, 255*0.456, 255*0.406], std=[255*0.229, 255*0.224, 255*0.225])
    ])
    return transform_train, transform_test

# def get_glas_transform():
#     transform_train = Compose([
#         ToPILImage(),
#         Resize((256, 256)),
#         ColorJitter(brightness=0.2,
#                                contrast=0.2,
#                                saturation=0.2,
#                                hue=0.1),
#         RandomHorizontalFlip(),
#         RandomAffine(5, scale=(0.75, 1.25)),
#         ToTensor(),
#         Normalize(mean=[255*0.485, 255*0.456, 255*0.406], std=[255*0.229, 255*0.224, 255*0.225])
#     ])
#     transform_test = Compose([
#         ToPILImage(),
#         Resize((256, 256)),
#         ToTensor(),
#         Normalize(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375])
#     ])
#     return transform_train, transform_test


def get_monu_transform(args):
    Idim = int(args['Idim'])
    transform_train = Compose([
        ToPILImage(),
        # Resize((Idim, Idim)),
        ColorJitter(brightness=0.4,
                               contrast=0.4,
                               saturation=0.4,
                               hue=0.1),
        RandomHorizontalFlip(),
        RandomAffine(int(args['rotate']), scale=(float(args['scale1']), float(args['scale2']))),
        ToTensor(),
        # Normalize(mean=[142.07, 98.48, 132.96], std=[65.78, 57.05, 57.78])
    ])
    transform_test = Compose([
        ToPILImage(),
        # Resize((Idim, Idim)),
        ToTensor(),
        # Normalize(mean=[142.07, 98.48, 132.96], std=[65.78, 57.05, 57.78])
    ])
    return transform_train, transform_test


def get_polyp_transform():
    transform_train = Compose([
        # Resize((352, 352)),
        ToPILImage(),
        ColorJitter(brightness=0.4,
                               contrast=0.4,
                               saturation=0.4,
                               hue=0.1),
        RandomVerticalFlip(),
        RandomHorizontalFlip(),
        RandomAffine(90, scale=(0.75, 1.25)),
        ToTensor(),
        # Normalize([105.61, 63.69, 45.67],
        #                      [83.08, 55.86, 42.59])
    ])
    transform_test = Compose([
        # Resize((352, 352)),
        ToPILImage(),
        ToTensor(),
        # Normalize([105.61, 63.69, 45.67],
        #                      [83.08, 55.86, 42.59])
    ])
    return transform_train, transform_test


def get_polyp_support_train_transform():
    transform_train = Compose([
        ColorJitter(brightness=0.4,
                               contrast=0.4,
                               saturation=0.4,
                               hue=0.1),
        RandomVerticalFlip(),
        RandomHorizontalFlip(),
        RandomAffine(90, scale=(0.75, 1.25)),
    ])

    return transform_train