File size: 14,948 Bytes
1f5fa16
 
 
 
4f8d4c0
1f5fa16
 
 
 
 
4f5b8e3
2015dcc
 
 
 
4f8d4c0
1f5fa16
4f8d4c0
5bdb5dc
1f5fa16
4f8d4c0
 
 
1f5fa16
4f8d4c0
1f5fa16
 
 
 
 
4f8d4c0
1f5fa16
 
 
 
4f8d4c0
1f5fa16
4f8d4c0
8d08409
4f8d4c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f5fa16
4f8d4c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5439aa4
b8d3d2d
 
 
 
 
5439aa4
1f5fa16
2015dcc
4f8d4c0
2015dcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd40815
5439aa4
1f5fa16
5439aa4
1f5fa16
 
 
5439aa4
1f5fa16
5439aa4
1f5fa16
 
2015dcc
 
1f5fa16
 
4f8d4c0
 
5439aa4
4f8d4c0
1f5fa16
2015dcc
4f8d4c0
2015dcc
4f8d4c0
 
2015dcc
 
4f8d4c0
 
 
 
5439aa4
4f8d4c0
5439aa4
 
dd86f76
5439aa4
 
 
 
4f8d4c0
1f5fa16
 
4f8d4c0
1f5fa16
 
4f8d4c0
1f5fa16
 
 
 
 
2015dcc
4f8d4c0
2015dcc
4f8d4c0
 
 
1f5fa16
 
3cd5fe0
ce4c1b6
 
 
 
 
 
 
 
 
 
 
 
2015dcc
 
ce4c1b6
 
4f8d4c0
ce4c1b6
 
5d64731
ce4c1b6
 
 
 
 
 
 
 
 
2015dcc
 
ce4c1b6
 
 
4f8d4c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f5fa16
4f8d4c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f5fa16
 
4f8d4c0
1f5fa16
 
 
 
 
 
 
 
 
 
2015dcc
1f5fa16
 
4f8d4c0
 
 
 
 
 
 
 
 
 
 
 
 
1f5fa16
4f8d4c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f5fa16
5439aa4
1f5fa16
4f8d4c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline, QwenImageEditPipeline, FlowMatchEulerDiscreteScheduler
import random
import uuid
import numpy as np
import time
import zipfile
import os
import requests
from urllib.parse import urlparse
import tempfile
import shutil
import math

# --- App Description ---
DESCRIPTION = """## Qwen Image Hpc/."""

# --- Helper Functions for Both Tabs ---
MAX_SEED = np.iinfo(np.int32).max

def save_image(img):
    """Saves a PIL image to a temporary file with a unique name."""
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    """Returns a random seed if randomize_seed is True, otherwise returns the original seed."""
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

# --- Qwen-Image-Gen Model ---
pipe_qwen_gen = DiffusionPipeline.from_pretrained(
    "Qwen/Qwen-Image",
    torch_dtype=dtype
).to(device)

# --- Qwen-Image-Edit Model with Lightning LoRA ---
scheduler_config = {
    "base_image_seq_len": 256,
    "base_shift": math.log(3),
    "invert_sigmas": False,
    "max_image_seq_len": 8192,
    "max_shift": math.log(3),
    "num_train_timesteps": 1000,
    "shift": 1.0,
    "shift_terminal": None,
    "stochastic_sampling": False,
    "time_shift_type": "exponential",
    "use_beta_sigmas": False,
    "use_dynamic_shifting": True,
    "use_exponential_sigmas": False,
    "use_karras_sigmas": False,
}
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)

pipe_qwen_edit = QwenImageEditPipeline.from_pretrained(
    "Qwen/Qwen-Image-Edit",
    scheduler=scheduler,
    torch_dtype=dtype
).to(device)

try:
    pipe_qwen_edit.load_lora_weights(
        "lightx2v/Qwen-Image-Lightning",
        weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
    )
    pipe_qwen_edit.fuse_lora()
    print("Successfully loaded Lightning LoRA weights for Qwen-Image-Edit")
except Exception as e:
    print(f"Warning: Could not load Lightning LoRA weights for Qwen-Image-Edit: {e}")
    print("Continuing with the base Qwen-Image-Edit model...")


# --- Qwen-Image-Gen Functions ---
aspect_ratios = {
    "1:1": (1328, 1328),
    "16:9": (1664, 928),
    "9:16": (928, 1664),
    "4:3": (1472, 1140),
    "3:4": (1140, 1472)
}

def load_lora_opt(pipe, lora_input):
    """Loads a LoRA from a local path, Hugging Face repo, or URL."""
    lora_input = lora_input.strip()
    if not lora_input:
        return

    if "/" in lora_input and not lora_input.startswith("http"):
        pipe.load_lora_weights(lora_input, adapter_name="default")
        return

    if lora_input.startswith("http"):
        url = lora_input
        if "huggingface.co" in url and "/blob/" not in url and "/resolve/" not in url:
            repo_id = urlparse(url).path.strip("/")
            pipe.load_lora_weights(repo_id, adapter_name="default")
            return

        if "/blob/" in url:
            url = url.replace("/blob/", "/resolve/")

        tmp_dir = tempfile.mkdtemp()
        local_path = os.path.join(tmp_dir, os.path.basename(urlparse(url).path))

        try:
            print(f"Downloading LoRA from {url}...")
            resp = requests.get(url, stream=True)
            resp.raise_for_status()
            with open(local_path, "wb") as f:
                for chunk in resp.iter_content(chunk_size=8192):
                    f.write(chunk)
            print(f"Saved LoRA to {local_path}")
            pipe.load_lora_weights(local_path, adapter_name="default")
        finally:
            shutil.rmtree(tmp_dir, ignore_errors=True)

@spaces.GPU(duration=120)
def generate_qwen(
    prompt: str,
    negative_prompt: str = "",
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 4.0,
    randomize_seed: bool = False,
    num_inference_steps: int = 50,
    num_images: int = 1,
    zip_images: bool = False,
    lora_input: str = "",
    lora_scale: float = 1.0,
    progress=gr.Progress(track_tqdm=True),
):
    """Main generation function for Qwen-Image-Gen."""
    seed = randomize_seed_fn(seed, randomize_seed)
    generator = torch.Generator(device).manual_seed(seed)

    start_time = time.time()

    current_adapters = pipe_qwen_gen.get_list_adapters()
    for adapter in current_adapters:
        pipe_qwen_gen.delete_adapters(adapter)
    pipe_qwen_gen.disable_lora()

    if lora_input and lora_input.strip() != "":
        load_lora_opt(pipe_qwen_gen, lora_input)
        pipe_qwen_gen.set_adapters(["default"], adapter_weights=[lora_scale])

    images = pipe_qwen_gen(
        prompt=prompt,
        negative_prompt=negative_prompt if negative_prompt else " ",
        height=height,
        width=width,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=num_images,
        generator=generator,
    ).images

    end_time = time.time()
    duration = end_time - start_time

    image_paths = [save_image(img) for img in images]
    zip_path = None
    if zip_images and len(image_paths) > 0:
        zip_name = str(uuid.uuid4()) + ".zip"
        with zipfile.ZipFile(zip_name, 'w') as zipf:
            for i, img_path in enumerate(image_paths):
                zipf.write(img_path, arcname=f"Img_{i}.png")
        zip_path = zip_name

    current_adapters = pipe_qwen_gen.get_list_adapters()
    for adapter in current_adapters:
        pipe_qwen_gen.delete_adapters(adapter)
    pipe_qwen_gen.disable_lora()

    return image_paths, seed, f"{duration:.2f}", zip_path

@spaces.GPU(duration=120)
def generate(
    prompt: str,
    negative_prompt: str,
    use_negative_prompt: bool,
    seed: int,
    width: int,
    height: int,
    guidance_scale: float,
    randomize_seed: bool,
    num_inference_steps: int,
    num_images: int,
    zip_images: bool,
    lora_input: str,
    lora_scale: float,
    progress=gr.Progress(track_tqdm=True),
):
    """UI wrapper for the Qwen-Image-Gen generation function."""
    final_negative_prompt = negative_prompt if use_negative_prompt else ""
    return generate_qwen(
        prompt=prompt,
        negative_prompt=final_negative_prompt,
        seed=seed,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        randomize_seed=randomize_seed,
        num_inference_steps=num_inference_steps,
        num_images=num_images,
        zip_images=zip_images,
        lora_input=lora_input,
        lora_scale=lora_scale,
        progress=progress,
    )

# --- Qwen-Image-Edit Functions ---
@spaces.GPU(duration=60)
def infer_edit(
    image,
    prompt,
    seed=42,
    randomize_seed=False,
    true_guidance_scale=1.0,
    num_inference_steps=8,
    progress=gr.Progress(track_tqdm=True),
):
    """Main inference function for Qwen-Image-Edit."""
    if image is None:
        raise gr.Error("Please upload an image to edit.")

    negative_prompt = " "
    seed = randomize_seed_fn(seed, randomize_seed)
    generator = torch.Generator(device=device).manual_seed(seed)

    print(f"Original prompt: '{prompt}'")
    print(f"Negative Prompt: '{negative_prompt}'")
    print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}")

    try:
        images = pipe_qwen_edit(
            image,
            prompt=prompt,
            negative_prompt=negative_prompt,
            num_inference_steps=num_inference_steps,
            generator=generator,
            true_cfg_scale=true_guidance_scale,
            num_images_per_prompt=1
        ).images
        return images[0], seed
    except Exception as e:
        print(f"Error during inference: {e}")
        raise gr.Error(f"An error occurred during image editing: {e}")

# --- Gradio UI ---
css = '''
.gradio-container {
    max-width: 800px !important;
    margin: 0 auto !important;
}
h1 {
    text-align: center;
}
footer {
    visibility: hidden;
}
'''

with gr.Blocks(css=css, theme="bethecloud/storj_theme", delete_cache=(240, 240)) as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Tabs():
        with gr.TabItem("Qwen-Image-Gen"):
            with gr.Column():
                with gr.Row():
                    prompt_gen = gr.Text(
                        label="Prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="✦︎ Enter your prompt for generation",
                        container=False,
                    )
                    run_button_gen = gr.Button("Generate", scale=0, variant="primary")
                result_gen = gr.Gallery(label="Result", columns=2, show_label=False, preview=True, height="auto")

                with gr.Row():
                    aspect_ratio_gen = gr.Dropdown(
                        label="Aspect Ratio",
                        choices=list(aspect_ratios.keys()),
                        value="1:1",
                    )
                    lora_gen = gr.Textbox(label="Optional LoRA", placeholder="Enter Hugging Face repo ID or URL...")

                with gr.Accordion("Additional Options", open=False):
                    use_negative_prompt_gen = gr.Checkbox(label="Use negative prompt", value=True)
                    negative_prompt_gen = gr.Text(
                        label="Negative prompt",
                        max_lines=1,
                        placeholder="Enter a negative prompt",
                        value="text, watermark, copyright, blurry, low resolution",
                    )
                    seed_gen = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                    randomize_seed_gen = gr.Checkbox(label="Randomize seed", value=True)
                    with gr.Row():
                        width_gen = gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=1328)
                        height_gen = gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1328)
                    guidance_scale_gen = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=20.0, step=0.1, value=4.0)
                    num_inference_steps_gen = gr.Slider("Number of inference steps", 1, 100, 50, step=1)
                    num_images_gen = gr.Slider("Number of images", 1, 5, 1, step=1)
                    zip_images_gen = gr.Checkbox(label="Zip generated images", value=False)
                    with gr.Row():
                        lora_scale_gen = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1)

                    gr.Markdown("### Output Information")
                    seed_display_gen = gr.Textbox(label="Seed used", interactive=False)
                    generation_time_gen = gr.Textbox(label="Generation time (seconds)", interactive=False)
                    zip_file_gen = gr.File(label="Download ZIP")
            
            # --- Gen Tab Logic ---
            def set_dimensions(ar):
                w, h = aspect_ratios[ar]
                return gr.update(value=w), gr.update(value=h)

            aspect_ratio_gen.change(fn=set_dimensions, inputs=aspect_ratio_gen, outputs=[width_gen, height_gen])
            use_negative_prompt_gen.change(fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt_gen, outputs=negative_prompt_gen)

            gen_inputs = [
                prompt_gen, negative_prompt_gen, use_negative_prompt_gen, seed_gen, width_gen, height_gen,
                guidance_scale_gen, randomize_seed_gen, num_inference_steps_gen, num_images_gen,
                zip_images_gen, lora_gen, lora_scale_gen
            ]
            gen_outputs = [result_gen, seed_display_gen, generation_time_gen, zip_file_gen]

            gr.on(triggers=[prompt_gen.submit, run_button_gen.click], fn=generate, inputs=gen_inputs, outputs=gen_outputs)

            gen_examples = [
                "A decadent slice of layered chocolate cake on a ceramic plate with a drizzle of chocolate syrup and powdered sugar dusted on top.",
                "A young girl wearing school uniform stands in a classroom, writing on a chalkboard. The text 'Introducing Qwen-Image' appears in neat white chalk.",
                "一幅精致细腻的工笔画,画面中心是一株蓬勃生长的红色牡丹,花朵繁茂。",
                "Realistic still life photography style: A single, fresh apple, resting on a clean, soft-textured surface.",
            ]
            gr.Examples(examples=gen_examples, inputs=prompt_gen, outputs=gen_outputs, fn=generate, cache_examples=False)

        with gr.TabItem("Qwen-Image-Edit"):
            with gr.Column():
                with gr.Row():
                    input_image_edit = gr.Image(label="Input Image", type="pil", height=400)
                    result_edit = gr.Image(label="Result", type="pil", height=400)
                
                with gr.Row():
                    prompt_edit = gr.Text(
                        label="Edit Instruction",
                        show_label=False,
                        placeholder="Describe the edit you want to make",
                        container=False,
                    )
                    run_button_edit = gr.Button("Edit", variant="primary")

                with gr.Accordion("Advanced Settings", open=False):
                    seed_edit = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
                    randomize_seed_edit = gr.Checkbox(label="Randomize seed", value=True)
                    with gr.Row():
                        true_guidance_scale_edit = gr.Slider(
                            label="True guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0
                        )
                        num_inference_steps_edit = gr.Slider(
                            label="Inference steps (Lightning LoRA)", minimum=4, maximum=28, step=1, value=8
                        )
            
            # --- Edit Tab Logic ---
            edit_inputs = [
                input_image_edit, prompt_edit, seed_edit, randomize_seed_edit,
                true_guidance_scale_edit, num_inference_steps_edit
            ]
            edit_outputs = [result_edit, seed_edit]
            
            gr.on(triggers=[prompt_edit.submit, run_button_edit.click], fn=infer_edit, inputs=edit_inputs, outputs=edit_outputs)
            
            edit_examples = [
                ["image-edit/cat.png", "make the cat wear sunglasses"],
                ["image-edit/girl.png", "change her hair to blonde"],
            ]
       
            gr.Examples(examples=edit_examples, inputs=[input_image_edit, prompt_edit], outputs=edit_outputs, fn=infer_edit, cache_examples=True)


if __name__ == "__main__":
    demo.queue(max_size=50).launch(share=False, debug=True)