Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,10 +2,9 @@ import spaces
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
-
from diffusers import DiffusionPipeline
|
6 |
import random
|
7 |
import uuid
|
8 |
-
from typing import Union, List, Optional
|
9 |
import numpy as np
|
10 |
import time
|
11 |
import zipfile
|
@@ -14,32 +13,74 @@ import requests
|
|
14 |
from urllib.parse import urlparse
|
15 |
import tempfile
|
16 |
import shutil
|
|
|
17 |
|
18 |
-
#
|
19 |
DESCRIPTION = """## Qwen Image Hpc/."""
|
20 |
|
21 |
-
# Helper
|
|
|
|
|
22 |
def save_image(img):
|
|
|
23 |
unique_name = str(uuid.uuid4()) + ".png"
|
24 |
img.save(unique_name)
|
25 |
return unique_name
|
26 |
|
27 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
|
28 |
if randomize_seed:
|
29 |
seed = random.randint(0, MAX_SEED)
|
30 |
return seed
|
31 |
|
32 |
-
|
33 |
-
MAX_IMAGE_SIZE = 2048
|
34 |
-
|
35 |
-
# Load Qwen/Qwen-Image pipeline
|
36 |
dtype = torch.bfloat16
|
37 |
-
device =
|
38 |
|
39 |
-
# --- Model
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
aspect_ratios = {
|
44 |
"1:1": (1328, 1328),
|
45 |
"16:9": (1664, 928),
|
@@ -49,29 +90,25 @@ aspect_ratios = {
|
|
49 |
}
|
50 |
|
51 |
def load_lora_opt(pipe, lora_input):
|
|
|
52 |
lora_input = lora_input.strip()
|
53 |
if not lora_input:
|
54 |
return
|
55 |
|
56 |
-
# If it's just an ID like "author/model"
|
57 |
if "/" in lora_input and not lora_input.startswith("http"):
|
58 |
pipe.load_lora_weights(lora_input, adapter_name="default")
|
59 |
return
|
60 |
|
61 |
if lora_input.startswith("http"):
|
62 |
url = lora_input
|
63 |
-
|
64 |
-
# Repo page (no blob/resolve)
|
65 |
if "huggingface.co" in url and "/blob/" not in url and "/resolve/" not in url:
|
66 |
repo_id = urlparse(url).path.strip("/")
|
67 |
pipe.load_lora_weights(repo_id, adapter_name="default")
|
68 |
return
|
69 |
|
70 |
-
# Blob link → convert to resolve link
|
71 |
if "/blob/" in url:
|
72 |
url = url.replace("/blob/", "/resolve/")
|
73 |
|
74 |
-
# Download direct file
|
75 |
tmp_dir = tempfile.mkdtemp()
|
76 |
local_path = os.path.join(tmp_dir, os.path.basename(urlparse(url).path))
|
77 |
|
@@ -87,7 +124,6 @@ def load_lora_opt(pipe, lora_input):
|
|
87 |
finally:
|
88 |
shutil.rmtree(tmp_dir, ignore_errors=True)
|
89 |
|
90 |
-
# Generation function for Qwen/Qwen-Image
|
91 |
@spaces.GPU(duration=120)
|
92 |
def generate_qwen(
|
93 |
prompt: str,
|
@@ -104,56 +140,51 @@ def generate_qwen(
|
|
104 |
lora_scale: float = 1.0,
|
105 |
progress=gr.Progress(track_tqdm=True),
|
106 |
):
|
107 |
-
|
108 |
-
|
109 |
generator = torch.Generator(device).manual_seed(seed)
|
110 |
-
|
111 |
start_time = time.time()
|
112 |
|
113 |
-
current_adapters =
|
114 |
for adapter in current_adapters:
|
115 |
-
|
116 |
-
|
117 |
|
118 |
-
use_lora = False
|
119 |
if lora_input and lora_input.strip() != "":
|
120 |
-
load_lora_opt(
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
images = pipe_qwen(
|
125 |
prompt=prompt,
|
126 |
-
negative_prompt=negative_prompt if negative_prompt else "",
|
127 |
height=height,
|
128 |
width=width,
|
129 |
guidance_scale=guidance_scale,
|
130 |
num_inference_steps=num_inference_steps,
|
131 |
num_images_per_prompt=num_images,
|
132 |
generator=generator,
|
133 |
-
output_type="pil",
|
134 |
).images
|
135 |
-
|
136 |
end_time = time.time()
|
137 |
duration = end_time - start_time
|
138 |
-
|
139 |
image_paths = [save_image(img) for img in images]
|
140 |
zip_path = None
|
141 |
-
if zip_images:
|
142 |
zip_name = str(uuid.uuid4()) + ".zip"
|
143 |
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
144 |
for i, img_path in enumerate(image_paths):
|
145 |
zipf.write(img_path, arcname=f"Img_{i}.png")
|
146 |
zip_path = zip_name
|
147 |
|
148 |
-
|
149 |
-
current_adapters = pipe_qwen.get_list_adapters()
|
150 |
for adapter in current_adapters:
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
return image_paths, seed, f"{duration:.2f}", zip_path
|
155 |
|
156 |
-
# Wrapper function to handle UI logic
|
157 |
@spaces.GPU(duration=120)
|
158 |
def generate(
|
159 |
prompt: str,
|
@@ -171,6 +202,7 @@ def generate(
|
|
171 |
lora_scale: float,
|
172 |
progress=gr.Progress(track_tqdm=True),
|
173 |
):
|
|
|
174 |
final_negative_prompt = negative_prompt if use_negative_prompt else ""
|
175 |
return generate_qwen(
|
176 |
prompt=prompt,
|
@@ -188,19 +220,48 @@ def generate(
|
|
188 |
progress=progress,
|
189 |
)
|
190 |
|
191 |
-
#
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
css = '''
|
202 |
.gradio-container {
|
203 |
-
max-width:
|
204 |
margin: 0 auto !important;
|
205 |
}
|
206 |
h1 {
|
@@ -211,148 +272,123 @@ footer {
|
|
211 |
}
|
212 |
'''
|
213 |
|
214 |
-
# Gradio interface
|
215 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme", delete_cache=(240, 240)) as demo:
|
216 |
gr.Markdown(DESCRIPTION)
|
217 |
-
with gr.Row():
|
218 |
-
prompt = gr.Text(
|
219 |
-
label="Prompt",
|
220 |
-
show_label=False,
|
221 |
-
max_lines=1,
|
222 |
-
placeholder="✦︎ Enter your prompt",
|
223 |
-
container=False,
|
224 |
-
)
|
225 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
226 |
-
result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True)
|
227 |
-
|
228 |
-
with gr.Row():
|
229 |
-
aspect_ratio = gr.Dropdown(
|
230 |
-
label="Aspect Ratio",
|
231 |
-
choices=list(aspect_ratios.keys()),
|
232 |
-
value="1:1",
|
233 |
-
)
|
234 |
-
lora = gr.Textbox(label="qwen image lora (optional)", placeholder="enter the path...")
|
235 |
-
with gr.Accordion("Additional Options", open=False):
|
236 |
-
use_negative_prompt = gr.Checkbox(
|
237 |
-
label="Use negative prompt",
|
238 |
-
value=True,
|
239 |
-
visible=True
|
240 |
-
)
|
241 |
-
negative_prompt = gr.Text(
|
242 |
-
label="Negative prompt",
|
243 |
-
max_lines=1,
|
244 |
-
placeholder="Enter a negative prompt",
|
245 |
-
value="text, watermark, copyright, blurry, low resolution",
|
246 |
-
visible=True,
|
247 |
-
)
|
248 |
-
seed = gr.Slider(
|
249 |
-
label="Seed",
|
250 |
-
minimum=0,
|
251 |
-
maximum=MAX_SEED,
|
252 |
-
step=1,
|
253 |
-
value=0,
|
254 |
-
)
|
255 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
256 |
-
with gr.Row():
|
257 |
-
width = gr.Slider(
|
258 |
-
label="Width",
|
259 |
-
minimum=512,
|
260 |
-
maximum=2048,
|
261 |
-
step=64,
|
262 |
-
value=1024,
|
263 |
-
)
|
264 |
-
height = gr.Slider(
|
265 |
-
label="Height",
|
266 |
-
minimum=512,
|
267 |
-
maximum=2048,
|
268 |
-
step=64,
|
269 |
-
value=1024,
|
270 |
-
)
|
271 |
-
guidance_scale = gr.Slider(
|
272 |
-
label="Guidance Scale",
|
273 |
-
minimum=0.0,
|
274 |
-
maximum=20.0,
|
275 |
-
step=0.1,
|
276 |
-
value=4.0,
|
277 |
-
)
|
278 |
-
num_inference_steps = gr.Slider(
|
279 |
-
label="Number of inference steps",
|
280 |
-
minimum=1,
|
281 |
-
maximum=100,
|
282 |
-
step=1,
|
283 |
-
value=50,
|
284 |
-
)
|
285 |
-
num_images = gr.Slider(
|
286 |
-
label="Number of images",
|
287 |
-
minimum=1,
|
288 |
-
maximum=5,
|
289 |
-
step=1,
|
290 |
-
value=1,
|
291 |
-
)
|
292 |
-
zip_images = gr.Checkbox(label="Zip generated images", value=False)
|
293 |
-
with gr.Row():
|
294 |
-
lora_scale = gr.Slider(
|
295 |
-
label="LoRA Scale",
|
296 |
-
minimum=0,
|
297 |
-
maximum=2,
|
298 |
-
step=0.01,
|
299 |
-
value=1,
|
300 |
-
)
|
301 |
-
|
302 |
-
gr.Markdown("### Output Information")
|
303 |
-
seed_display = gr.Textbox(label="Seed used", interactive=False)
|
304 |
-
generation_time = gr.Textbox(label="Generation time (seconds)", interactive=False)
|
305 |
-
zip_file = gr.File(label="Download ZIP")
|
306 |
-
|
307 |
-
# Update aspect ratio
|
308 |
-
def set_dimensions(ar):
|
309 |
-
w, h = aspect_ratios[ar]
|
310 |
-
return gr.update(value=w), gr.update(value=h)
|
311 |
-
|
312 |
-
aspect_ratio.change(
|
313 |
-
fn=set_dimensions,
|
314 |
-
inputs=aspect_ratio,
|
315 |
-
outputs=[width, height]
|
316 |
-
)
|
317 |
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
|
348 |
-
# Examples
|
349 |
-
gr.Examples(
|
350 |
-
examples=examples,
|
351 |
-
inputs=prompt,
|
352 |
-
outputs=[result, seed_display, generation_time, zip_file],
|
353 |
-
fn=generate,
|
354 |
-
cache_examples=False,
|
355 |
-
)
|
356 |
|
357 |
if __name__ == "__main__":
|
358 |
-
demo.queue(max_size=50).launch(share=False,
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
+
from diffusers import DiffusionPipeline, QwenImageEditPipeline, FlowMatchEulerDiscreteScheduler
|
6 |
import random
|
7 |
import uuid
|
|
|
8 |
import numpy as np
|
9 |
import time
|
10 |
import zipfile
|
|
|
13 |
from urllib.parse import urlparse
|
14 |
import tempfile
|
15 |
import shutil
|
16 |
+
import math
|
17 |
|
18 |
+
# --- App Description ---
|
19 |
DESCRIPTION = """## Qwen Image Hpc/."""
|
20 |
|
21 |
+
# --- Helper Functions for Both Tabs ---
|
22 |
+
MAX_SEED = np.iinfo(np.int32).max
|
23 |
+
|
24 |
def save_image(img):
|
25 |
+
"""Saves a PIL image to a temporary file with a unique name."""
|
26 |
unique_name = str(uuid.uuid4()) + ".png"
|
27 |
img.save(unique_name)
|
28 |
return unique_name
|
29 |
|
30 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
31 |
+
"""Returns a random seed if randomize_seed is True, otherwise returns the original seed."""
|
32 |
if randomize_seed:
|
33 |
seed = random.randint(0, MAX_SEED)
|
34 |
return seed
|
35 |
|
36 |
+
# --- Model Loading ---
|
|
|
|
|
|
|
37 |
dtype = torch.bfloat16
|
38 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
39 |
|
40 |
+
# --- Qwen-Image-Gen Model ---
|
41 |
+
pipe_qwen_gen = DiffusionPipeline.from_pretrained(
|
42 |
+
"Qwen/Qwen-Image",
|
43 |
+
torch_dtype=dtype
|
44 |
+
).to(device)
|
45 |
+
|
46 |
+
# --- Qwen-Image-Edit Model with Lightning LoRA ---
|
47 |
+
scheduler_config = {
|
48 |
+
"base_image_seq_len": 256,
|
49 |
+
"base_shift": math.log(3),
|
50 |
+
"invert_sigmas": False,
|
51 |
+
"max_image_seq_len": 8192,
|
52 |
+
"max_shift": math.log(3),
|
53 |
+
"num_train_timesteps": 1000,
|
54 |
+
"shift": 1.0,
|
55 |
+
"shift_terminal": None,
|
56 |
+
"stochastic_sampling": False,
|
57 |
+
"time_shift_type": "exponential",
|
58 |
+
"use_beta_sigmas": False,
|
59 |
+
"use_dynamic_shifting": True,
|
60 |
+
"use_exponential_sigmas": False,
|
61 |
+
"use_karras_sigmas": False,
|
62 |
+
}
|
63 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
|
64 |
|
65 |
+
pipe_qwen_edit = QwenImageEditPipeline.from_pretrained(
|
66 |
+
"Qwen/Qwen-Image-Edit",
|
67 |
+
scheduler=scheduler,
|
68 |
+
torch_dtype=dtype
|
69 |
+
).to(device)
|
70 |
+
|
71 |
+
try:
|
72 |
+
pipe_qwen_edit.load_lora_weights(
|
73 |
+
"lightx2v/Qwen-Image-Lightning",
|
74 |
+
weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
|
75 |
+
)
|
76 |
+
pipe_qwen_edit.fuse_lora()
|
77 |
+
print("Successfully loaded Lightning LoRA weights for Qwen-Image-Edit")
|
78 |
+
except Exception as e:
|
79 |
+
print(f"Warning: Could not load Lightning LoRA weights for Qwen-Image-Edit: {e}")
|
80 |
+
print("Continuing with the base Qwen-Image-Edit model...")
|
81 |
+
|
82 |
+
|
83 |
+
# --- Qwen-Image-Gen Functions ---
|
84 |
aspect_ratios = {
|
85 |
"1:1": (1328, 1328),
|
86 |
"16:9": (1664, 928),
|
|
|
90 |
}
|
91 |
|
92 |
def load_lora_opt(pipe, lora_input):
|
93 |
+
"""Loads a LoRA from a local path, Hugging Face repo, or URL."""
|
94 |
lora_input = lora_input.strip()
|
95 |
if not lora_input:
|
96 |
return
|
97 |
|
|
|
98 |
if "/" in lora_input and not lora_input.startswith("http"):
|
99 |
pipe.load_lora_weights(lora_input, adapter_name="default")
|
100 |
return
|
101 |
|
102 |
if lora_input.startswith("http"):
|
103 |
url = lora_input
|
|
|
|
|
104 |
if "huggingface.co" in url and "/blob/" not in url and "/resolve/" not in url:
|
105 |
repo_id = urlparse(url).path.strip("/")
|
106 |
pipe.load_lora_weights(repo_id, adapter_name="default")
|
107 |
return
|
108 |
|
|
|
109 |
if "/blob/" in url:
|
110 |
url = url.replace("/blob/", "/resolve/")
|
111 |
|
|
|
112 |
tmp_dir = tempfile.mkdtemp()
|
113 |
local_path = os.path.join(tmp_dir, os.path.basename(urlparse(url).path))
|
114 |
|
|
|
124 |
finally:
|
125 |
shutil.rmtree(tmp_dir, ignore_errors=True)
|
126 |
|
|
|
127 |
@spaces.GPU(duration=120)
|
128 |
def generate_qwen(
|
129 |
prompt: str,
|
|
|
140 |
lora_scale: float = 1.0,
|
141 |
progress=gr.Progress(track_tqdm=True),
|
142 |
):
|
143 |
+
"""Main generation function for Qwen-Image-Gen."""
|
144 |
+
seed = randomize_seed_fn(seed, randomize_seed)
|
145 |
generator = torch.Generator(device).manual_seed(seed)
|
146 |
+
|
147 |
start_time = time.time()
|
148 |
|
149 |
+
current_adapters = pipe_qwen_gen.get_list_adapters()
|
150 |
for adapter in current_adapters:
|
151 |
+
pipe_qwen_gen.delete_adapters(adapter)
|
152 |
+
pipe_qwen_gen.disable_lora()
|
153 |
|
|
|
154 |
if lora_input and lora_input.strip() != "":
|
155 |
+
load_lora_opt(pipe_qwen_gen, lora_input)
|
156 |
+
pipe_qwen_gen.set_adapters(["default"], adapter_weights=[lora_scale])
|
157 |
+
|
158 |
+
images = pipe_qwen_gen(
|
|
|
159 |
prompt=prompt,
|
160 |
+
negative_prompt=negative_prompt if negative_prompt else " ",
|
161 |
height=height,
|
162 |
width=width,
|
163 |
guidance_scale=guidance_scale,
|
164 |
num_inference_steps=num_inference_steps,
|
165 |
num_images_per_prompt=num_images,
|
166 |
generator=generator,
|
|
|
167 |
).images
|
168 |
+
|
169 |
end_time = time.time()
|
170 |
duration = end_time - start_time
|
171 |
+
|
172 |
image_paths = [save_image(img) for img in images]
|
173 |
zip_path = None
|
174 |
+
if zip_images and len(image_paths) > 0:
|
175 |
zip_name = str(uuid.uuid4()) + ".zip"
|
176 |
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
177 |
for i, img_path in enumerate(image_paths):
|
178 |
zipf.write(img_path, arcname=f"Img_{i}.png")
|
179 |
zip_path = zip_name
|
180 |
|
181 |
+
current_adapters = pipe_qwen_gen.get_list_adapters()
|
|
|
182 |
for adapter in current_adapters:
|
183 |
+
pipe_qwen_gen.delete_adapters(adapter)
|
184 |
+
pipe_qwen_gen.disable_lora()
|
185 |
+
|
186 |
return image_paths, seed, f"{duration:.2f}", zip_path
|
187 |
|
|
|
188 |
@spaces.GPU(duration=120)
|
189 |
def generate(
|
190 |
prompt: str,
|
|
|
202 |
lora_scale: float,
|
203 |
progress=gr.Progress(track_tqdm=True),
|
204 |
):
|
205 |
+
"""UI wrapper for the Qwen-Image-Gen generation function."""
|
206 |
final_negative_prompt = negative_prompt if use_negative_prompt else ""
|
207 |
return generate_qwen(
|
208 |
prompt=prompt,
|
|
|
220 |
progress=progress,
|
221 |
)
|
222 |
|
223 |
+
# --- Qwen-Image-Edit Functions ---
|
224 |
+
@spaces.GPU(duration=60)
|
225 |
+
def infer_edit(
|
226 |
+
image,
|
227 |
+
prompt,
|
228 |
+
seed=42,
|
229 |
+
randomize_seed=False,
|
230 |
+
true_guidance_scale=1.0,
|
231 |
+
num_inference_steps=8,
|
232 |
+
progress=gr.Progress(track_tqdm=True),
|
233 |
+
):
|
234 |
+
"""Main inference function for Qwen-Image-Edit."""
|
235 |
+
if image is None:
|
236 |
+
raise gr.Error("Please upload an image to edit.")
|
237 |
+
|
238 |
+
negative_prompt = " "
|
239 |
+
seed = randomize_seed_fn(seed, randomize_seed)
|
240 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
241 |
+
|
242 |
+
print(f"Original prompt: '{prompt}'")
|
243 |
+
print(f"Negative Prompt: '{negative_prompt}'")
|
244 |
+
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}")
|
245 |
|
246 |
+
try:
|
247 |
+
images = pipe_qwen_edit(
|
248 |
+
image,
|
249 |
+
prompt=prompt,
|
250 |
+
negative_prompt=negative_prompt,
|
251 |
+
num_inference_steps=num_inference_steps,
|
252 |
+
generator=generator,
|
253 |
+
true_cfg_scale=true_guidance_scale,
|
254 |
+
num_images_per_prompt=1
|
255 |
+
).images
|
256 |
+
return images[0], seed
|
257 |
+
except Exception as e:
|
258 |
+
print(f"Error during inference: {e}")
|
259 |
+
raise gr.Error(f"An error occurred during image editing: {e}")
|
260 |
+
|
261 |
+
# --- Gradio UI ---
|
262 |
css = '''
|
263 |
.gradio-container {
|
264 |
+
max-width: 800px !important;
|
265 |
margin: 0 auto !important;
|
266 |
}
|
267 |
h1 {
|
|
|
272 |
}
|
273 |
'''
|
274 |
|
|
|
275 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme", delete_cache=(240, 240)) as demo:
|
276 |
gr.Markdown(DESCRIPTION)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
|
278 |
+
with gr.Tabs():
|
279 |
+
with gr.TabItem("Qwen-Image-Gen"):
|
280 |
+
with gr.Column():
|
281 |
+
with gr.Row():
|
282 |
+
prompt_gen = gr.Text(
|
283 |
+
label="Prompt",
|
284 |
+
show_label=False,
|
285 |
+
max_lines=1,
|
286 |
+
placeholder="✦︎ Enter your prompt for generation",
|
287 |
+
container=False,
|
288 |
+
)
|
289 |
+
run_button_gen = gr.Button("Generate", scale=0, variant="primary")
|
290 |
+
result_gen = gr.Gallery(label="Result", columns=2, show_label=False, preview=True, height="auto")
|
291 |
|
292 |
+
with gr.Row():
|
293 |
+
aspect_ratio_gen = gr.Dropdown(
|
294 |
+
label="Aspect Ratio",
|
295 |
+
choices=list(aspect_ratios.keys()),
|
296 |
+
value="1:1",
|
297 |
+
)
|
298 |
+
lora_gen = gr.Textbox(label="Optional LoRA", placeholder="Enter Hugging Face repo ID or URL...")
|
299 |
+
|
300 |
+
with gr.Accordion("Additional Options", open=False):
|
301 |
+
use_negative_prompt_gen = gr.Checkbox(label="Use negative prompt", value=True)
|
302 |
+
negative_prompt_gen = gr.Text(
|
303 |
+
label="Negative prompt",
|
304 |
+
max_lines=1,
|
305 |
+
placeholder="Enter a negative prompt",
|
306 |
+
value="text, watermark, copyright, blurry, low resolution",
|
307 |
+
)
|
308 |
+
seed_gen = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
309 |
+
randomize_seed_gen = gr.Checkbox(label="Randomize seed", value=True)
|
310 |
+
with gr.Row():
|
311 |
+
width_gen = gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=1328)
|
312 |
+
height_gen = gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1328)
|
313 |
+
guidance_scale_gen = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=20.0, step=0.1, value=4.0)
|
314 |
+
num_inference_steps_gen = gr.Slider("Number of inference steps", 1, 100, 50, step=1)
|
315 |
+
num_images_gen = gr.Slider("Number of images", 1, 5, 1, step=1)
|
316 |
+
zip_images_gen = gr.Checkbox(label="Zip generated images", value=False)
|
317 |
+
with gr.Row():
|
318 |
+
lora_scale_gen = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1)
|
319 |
+
|
320 |
+
gr.Markdown("### Output Information")
|
321 |
+
seed_display_gen = gr.Textbox(label="Seed used", interactive=False)
|
322 |
+
generation_time_gen = gr.Textbox(label="Generation time (seconds)", interactive=False)
|
323 |
+
zip_file_gen = gr.File(label="Download ZIP")
|
324 |
+
|
325 |
+
# --- Gen Tab Logic ---
|
326 |
+
def set_dimensions(ar):
|
327 |
+
w, h = aspect_ratios[ar]
|
328 |
+
return gr.update(value=w), gr.update(value=h)
|
329 |
+
|
330 |
+
aspect_ratio_gen.change(fn=set_dimensions, inputs=aspect_ratio_gen, outputs=[width_gen, height_gen])
|
331 |
+
use_negative_prompt_gen.change(fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt_gen, outputs=negative_prompt_gen)
|
332 |
+
|
333 |
+
gen_inputs = [
|
334 |
+
prompt_gen, negative_prompt_gen, use_negative_prompt_gen, seed_gen, width_gen, height_gen,
|
335 |
+
guidance_scale_gen, randomize_seed_gen, num_inference_steps_gen, num_images_gen,
|
336 |
+
zip_images_gen, lora_gen, lora_scale_gen
|
337 |
+
]
|
338 |
+
gen_outputs = [result_gen, seed_display_gen, generation_time_gen, zip_file_gen]
|
339 |
+
|
340 |
+
gr.on(triggers=[prompt_gen.submit, run_button_gen.click], fn=generate, inputs=gen_inputs, outputs=gen_outputs)
|
341 |
+
|
342 |
+
gen_examples = [
|
343 |
+
"A decadent slice of layered chocolate cake on a ceramic plate with a drizzle of chocolate syrup and powdered sugar dusted on top.",
|
344 |
+
"A young girl wearing school uniform stands in a classroom, writing on a chalkboard. The text 'Introducing Qwen-Image' appears in neat white chalk.",
|
345 |
+
"一幅精致细腻的工笔画,画面中心是一株��勃生长的红色牡丹,花朵繁茂。",
|
346 |
+
"Realistic still life photography style: A single, fresh apple, resting on a clean, soft-textured surface.",
|
347 |
+
]
|
348 |
+
gr.Examples(examples=gen_examples, inputs=prompt_gen, outputs=gen_outputs, fn=generate, cache_examples=False)
|
349 |
+
|
350 |
+
with gr.TabItem("Qwen-Image-Edit"):
|
351 |
+
with gr.Column():
|
352 |
+
with gr.Row():
|
353 |
+
input_image_edit = gr.Image(label="Input Image", type="pil", height=400)
|
354 |
+
result_edit = gr.Image(label="Result", type="pil", height=400)
|
355 |
+
|
356 |
+
with gr.Row():
|
357 |
+
prompt_edit = gr.Text(
|
358 |
+
label="Edit Instruction",
|
359 |
+
show_label=False,
|
360 |
+
placeholder="Describe the edit you want to make",
|
361 |
+
container=False,
|
362 |
+
)
|
363 |
+
run_button_edit = gr.Button("Edit", variant="primary")
|
364 |
+
|
365 |
+
with gr.Accordion("Advanced Settings", open=False):
|
366 |
+
seed_edit = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
|
367 |
+
randomize_seed_edit = gr.Checkbox(label="Randomize seed", value=True)
|
368 |
+
with gr.Row():
|
369 |
+
true_guidance_scale_edit = gr.Slider(
|
370 |
+
label="True guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0
|
371 |
+
)
|
372 |
+
num_inference_steps_edit = gr.Slider(
|
373 |
+
label="Inference steps (Lightning LoRA)", minimum=4, maximum=28, step=1, value=8
|
374 |
+
)
|
375 |
+
|
376 |
+
# --- Edit Tab Logic ---
|
377 |
+
edit_inputs = [
|
378 |
+
input_image_edit, prompt_edit, seed_edit, randomize_seed_edit,
|
379 |
+
true_guidance_scale_edit, num_inference_steps_edit
|
380 |
+
]
|
381 |
+
edit_outputs = [result_edit, seed_edit]
|
382 |
+
|
383 |
+
gr.on(triggers=[prompt_edit.submit, run_button_edit.click], fn=infer_edit, inputs=edit_inputs, outputs=edit_outputs)
|
384 |
+
|
385 |
+
edit_examples = [
|
386 |
+
["image-edit/cat.png", "make the cat wear sunglasses"],
|
387 |
+
["image-edit/girl.png", "change her hair to blonde"],
|
388 |
+
]
|
389 |
+
|
390 |
+
gr.Examples(examples=edit_examples, inputs=[input_image_edit, prompt_edit], outputs=edit_outputs, fn=infer_edit, cache_examples=True)
|
391 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
|
393 |
if __name__ == "__main__":
|
394 |
+
demo.queue(max_size=50).launch(share=False, debug=True)
|