prithivMLmods commited on
Commit
3987e62
·
verified ·
1 Parent(s): b95900b

Delete augmented_waste_classifier.py

Browse files
Files changed (1) hide show
  1. augmented_waste_classifier.py +0 -45
augmented_waste_classifier.py DELETED
@@ -1,45 +0,0 @@
1
- import gradio as gr
2
- import spaces
3
- from transformers import AutoImageProcessor
4
- from transformers import SiglipForImageClassification
5
- from transformers.image_utils import load_image
6
- from PIL import Image
7
- import torch
8
-
9
- # Load model and processor
10
- model_name = "prithivMLmods/Augmented-Waste-Classifier-SigLIP2"
11
- model = SiglipForImageClassification.from_pretrained(model_name)
12
- processor = AutoImageProcessor.from_pretrained(model_name)
13
-
14
- @spaces.GPU
15
- def waste_classification(image):
16
- """Predicts waste classification for an image."""
17
- image = Image.fromarray(image).convert("RGB")
18
- inputs = processor(images=image, return_tensors="pt")
19
-
20
- with torch.no_grad():
21
- outputs = model(**inputs)
22
- logits = outputs.logits
23
- probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
24
-
25
- labels = {
26
- "0": "Battery", "1": "Biological", "2": "Cardboard", "3": "Clothes",
27
- "4": "Glass", "5": "Metal", "6": "Paper", "7": "Plastic",
28
- "8": "Shoes", "9": "Trash"
29
- }
30
- predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
31
-
32
- return predictions
33
-
34
- # Create Gradio interface
35
- iface = gr.Interface(
36
- fn=waste_classification,
37
- inputs=gr.Image(type="numpy"),
38
- outputs=gr.Label(label="Prediction Scores"),
39
- title="Augmented Waste Classification",
40
- description="Upload an image to classify the type of waste."
41
- )
42
-
43
- # Launch the app
44
- if __name__ == "__main__":
45
- iface.launch()