prithivMLmods commited on
Commit
b95900b
·
verified ·
1 Parent(s): 1c8fdcd

Delete rice_leaf_disease.py

Browse files
Files changed (1) hide show
  1. rice_leaf_disease.py +0 -46
rice_leaf_disease.py DELETED
@@ -1,46 +0,0 @@
1
- import gradio as gr
2
- import spaces
3
- from transformers import AutoImageProcessor, SiglipForImageClassification
4
- from transformers.image_utils import load_image
5
- from PIL import Image
6
- import torch
7
-
8
- # Load model and processor
9
- model_name = "prithivMLmods/Rice-Leaf-Disease"
10
- model = SiglipForImageClassification.from_pretrained(model_name)
11
- processor = AutoImageProcessor.from_pretrained(model_name)
12
-
13
- @spaces.GPU
14
- def classify_leaf_disease(image):
15
- """Predicts the disease type in a rice leaf image."""
16
- image = Image.fromarray(image).convert("RGB")
17
- inputs = processor(images=image, return_tensors="pt")
18
-
19
- with torch.no_grad():
20
- outputs = model(**inputs)
21
- logits = outputs.logits
22
- probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
23
-
24
- labels = {
25
- "0": "Bacterial Blight",
26
- "1": "Blast",
27
- "2": "Brown Spot",
28
- "3": "Healthy",
29
- "4": "Tungro"
30
- }
31
- predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
32
-
33
- return predictions
34
-
35
- # Create Gradio interface
36
- iface = gr.Interface(
37
- fn=classify_leaf_disease,
38
- inputs=gr.Image(type="numpy"),
39
- outputs=gr.Label(label="Prediction Scores"),
40
- title="Rice Leaf Disease Classification 🌾",
41
- description="Upload an image of a rice leaf to identify if it is healthy or affected by diseases like Bacterial Blight, Blast, Brown Spot, or Tungro."
42
- )
43
-
44
- # Launch the app
45
- if __name__ == "__main__":
46
- iface.launch()