File size: 6,465 Bytes
7347868
 
 
 
 
 
 
 
a57c2fb
7347868
 
 
 
 
 
 
 
 
 
 
36886af
0b5a000
 
 
 
7347868
5e4db52
7347868
 
a57c2fb
 
 
 
 
 
 
 
 
 
 
 
 
7347868
 
 
 
 
 
 
 
 
 
 
 
 
 
5e4db52
7347868
5e4db52
7347868
eee0977
a57c2fb
 
 
7347868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a57c2fb
7347868
 
 
 
 
 
 
 
 
 
 
 
 
0b5bc49
 
 
 
 
7347868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b5bc49
7347868
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# from transformers import StoppingCriteria, StoppingCriteriaList, StopStringCriteria

MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 512
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

DESCRIPTION = """\
# Hymba-1.5B chat

"""

model_id = "nvidia/Hymba-1.5B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True)
model = model.cuda().to(torch.bfloat16)

#model.to('cuda')
#model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
tokenizer.chat_template = "{{'<extra_id_0>System'}}{% for message in messages %}{% if message['role'] == 'system' %}{{'\n' + message['content'].strip()}}{% if tools or contexts %}{{'\n'}}{% endif %}{% endif %}{% endfor %}{% if tools %}{% for tool in tools %}{{ '\n<tool> ' + tool|tojson + ' </tool>' }}{% endfor %}{% endif %}{% if contexts %}{% if tools %}{{'\n'}}{% endif %}{% for context in contexts %}{{ '\n<context> ' + context.strip() + ' </context>' }}{% endfor %}{% endif %}{{'\n\n'}}{% for message in messages %}{% if message['role'] == 'user' %}{{ '<extra_id_1>User\n' + message['content'].strip() + '\n' }}{% elif message['role'] == 'assistant' %}{{ '<extra_id_1>Assistant\n' + message['content'].strip() + '\n' }}{% elif message['role'] == 'tool' %}{{ '<extra_id_1>Tool\n' + message['content'].strip() + '\n' }}{% endif %}{% endfor %}{%- if add_generation_prompt %}{{'<extra_id_1>Assistant\n'}}{%- endif %}"
#tokenizer.use_default_system_prompt = False

# class StoppingCriteriaSub(StoppingCriteria):
#     def __init__(self, tokenizer, stops = [], encounters=1):
#         super().__init__()
#         self.stops = [stop.to("cuda") for stop in stops]
#         self.tokenizer = tokenizer
#         self.num_mamba_stop_ids = 8

#     def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
#         last_token = input_ids[0][-self.num_mamba_stop_ids:]
#         for stop in self.stops:
#             if self.tokenizer.decode(stop) in self.tokenizer.decode(last_token):
#                 return True
#         return False

@spaces.GPU
def generate(
    message: str,
    chat_history: list[dict],
    system_prompt: str = "",
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    conversation += chat_history
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation,  tokenize=True, add_generation_prompt=True, return_tensors="pt").to('cuda')
    
    # stopping_criteria = StoppingCriteriaList([StopStringCriteria(tokenizer=tokenizer, stop_strings="</s>")])
    
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=False)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
        # "stopping_criteria": stopping_criteria,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(label="System prompt", lines=6, value="You are a helpful assistant. Your name is Hymba-1.5B-Instruct-8K. \
                                               You are a new family of small language models featuring a hybrid-head architecture that strategically integrates attention mechanisms with state space models (SSMs). \
                                               You are developed by Deep Learning Efficiency Research (DLER) team at NVIDIA Research. \
                                               Nvidia Corporation is an American multinational corporation and technology company headquartered in Santa Clara, California. Nvidia was founded on April 5, 1993 by Jensen Huang. \
                                               The above is just a background context. You can answer any questions not limited to the above background context."),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Hello there! How are you doing?"],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Explain the plot of Cinderella in a sentence."],
        ["How many hours does it take a man to eat a Helicopter?"],
        ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
    ],
    cache_examples=False,
    type="messages",
)

with gr.Blocks(css_paths="style.css", fill_height=True) as demo:
    gr.Markdown(DESCRIPTION)
    # gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()
    # gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.queue(max_size=20).launch()