pmolchanov commited on
Commit
7347868
·
verified ·
1 Parent(s): 95c4c91

Create app_chat.py

Browse files
Files changed (1) hide show
  1. app_chat.py +128 -0
app_chat.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from threading import Thread
3
+ from typing import Iterator
4
+
5
+ import gradio as gr
6
+ import spaces
7
+ import torch
8
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
9
+
10
+ MAX_MAX_NEW_TOKENS = 1024
11
+ DEFAULT_MAX_NEW_TOKENS = 512
12
+ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
13
+
14
+ DESCRIPTION = """\
15
+ # Hymba-1.5B chat
16
+
17
+ """
18
+
19
+ model_id = "nvidia/Hymba-1.5B-Instruct"
20
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, trust_remote_code=True)
21
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
22
+ #tokenizer.use_default_system_prompt = False
23
+
24
+
25
+ @spaces.GPU
26
+ def generate(
27
+ message: str,
28
+ chat_history: list[dict],
29
+ system_prompt: str = "",
30
+ max_new_tokens: int = 1024,
31
+ temperature: float = 0.6,
32
+ top_p: float = 0.9,
33
+ top_k: int = 50,
34
+ repetition_penalty: float = 1.2,
35
+ ) -> Iterator[str]:
36
+ conversation = []
37
+ if system_prompt:
38
+ conversation.append({"role": "System", "content": system_prompt})
39
+ conversation += chat_history
40
+ conversation.append({"role": "User", "content": message})
41
+
42
+ input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
43
+ if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
44
+ input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
45
+ gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
46
+ input_ids = input_ids.to(model.device)
47
+
48
+ streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=False)
49
+ generate_kwargs = dict(
50
+ {"input_ids": input_ids},
51
+ streamer=streamer,
52
+ max_new_tokens=max_new_tokens,
53
+ do_sample=True,
54
+ top_p=top_p,
55
+ top_k=top_k,
56
+ temperature=temperature,
57
+ num_beams=1,
58
+ repetition_penalty=repetition_penalty,
59
+ )
60
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
61
+ t.start()
62
+
63
+ outputs = []
64
+ for text in streamer:
65
+ outputs.append(text)
66
+ yield "".join(outputs)
67
+
68
+
69
+ chat_interface = gr.ChatInterface(
70
+ fn=generate,
71
+ additional_inputs=[
72
+ gr.Textbox(label="System prompt", lines=6),
73
+ gr.Slider(
74
+ label="Max new tokens",
75
+ minimum=1,
76
+ maximum=MAX_MAX_NEW_TOKENS,
77
+ step=1,
78
+ value=DEFAULT_MAX_NEW_TOKENS,
79
+ ),
80
+ gr.Slider(
81
+ label="Temperature",
82
+ minimum=0.1,
83
+ maximum=4.0,
84
+ step=0.1,
85
+ value=0.6,
86
+ ),
87
+ gr.Slider(
88
+ label="Top-p (nucleus sampling)",
89
+ minimum=0.05,
90
+ maximum=1.0,
91
+ step=0.05,
92
+ value=0.9,
93
+ ),
94
+ gr.Slider(
95
+ label="Top-k",
96
+ minimum=1,
97
+ maximum=1000,
98
+ step=1,
99
+ value=50,
100
+ ),
101
+ gr.Slider(
102
+ label="Repetition penalty",
103
+ minimum=1.0,
104
+ maximum=2.0,
105
+ step=0.05,
106
+ value=1.2,
107
+ ),
108
+ ],
109
+ stop_btn=None,
110
+ examples=[
111
+ ["Hello there! How are you doing?"],
112
+ ["Can you explain briefly to me what is the Python programming language?"],
113
+ ["Explain the plot of Cinderella in a sentence."],
114
+ ["How many hours does it take a man to eat a Helicopter?"],
115
+ ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
116
+ ],
117
+ cache_examples=False,
118
+ type="messages",
119
+ )
120
+
121
+ with gr.Blocks(css_paths="style.css", fill_height=True) as demo:
122
+ gr.Markdown(DESCRIPTION)
123
+ # gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
124
+ chat_interface.render()
125
+ gr.Markdown(LICENSE)
126
+
127
+ if __name__ == "__main__":
128
+ demo.queue(max_size=20).launch()