Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,138 +1,285 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from transformers.utils import logging as hf_logging
|
5 |
|
6 |
-
#
|
|
|
|
|
7 |
os.environ["HF_HOME"] = "/data/.huggingface"
|
8 |
-
LOG_FILE = "/data/requests.log"
|
|
|
9 |
|
10 |
|
11 |
-
def log(
|
12 |
-
ts =
|
13 |
-
|
14 |
-
print(
|
15 |
try:
|
16 |
-
with open(
|
17 |
-
f.write(
|
18 |
-
except
|
19 |
pass
|
20 |
|
21 |
|
22 |
-
# ---------- Config ----------------------------------------------------------
|
23 |
-
MODEL_ID = "ibm-granite/granite-3.3-2b-instruct"
|
24 |
-
MAX_TURNS, MAX_TOKENS, MAX_INPUT_CH = 4, 64, 300
|
25 |
-
|
26 |
-
SYSTEM_MSG = (
|
27 |
-
"You are **SchoolSpiritΒ AI**, the digital mascot for SchoolSpiritΒ AIΒ LLC, "
|
28 |
-
"founded by CharlesΒ Norton inΒ 2025. The company installs onβprem AI chat "
|
29 |
-
"mascots, offers custom fineβtuning of language models, and ships turnkey "
|
30 |
-
"GPU hardware to Kβ12 schools.\n\n"
|
31 |
-
"GUIDELINES:\n"
|
32 |
-
"β’ Warm, encouraging tone for students, parents, staff.\n"
|
33 |
-
"β’ Replies β€Β 4 sentences unless asked for detail.\n"
|
34 |
-
"β’ If unsure/outβofβscope: say so & suggest human followβup.\n"
|
35 |
-
"β’ No personalβdata collection or sensitive advice.\n"
|
36 |
-
"β’ No profanity, politics, or mature themes."
|
37 |
-
)
|
38 |
-
WELCOME_MSG = "Welcome to SchoolSpiritΒ AI! Do you have any questions?"
|
39 |
-
|
40 |
-
# ---------- Model load (GPU FPβ16 β CPU fallback) ---------------------------
|
41 |
hf_logging.set_verbosity_error()
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
log("Loading tokenizer β¦")
|
44 |
-
tok = AutoTokenizer.from_pretrained(MODEL_ID)
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
"text-generation",
|
59 |
model=model,
|
60 |
tokenizer=tok,
|
61 |
-
|
62 |
-
do_sample=True,
|
63 |
-
temperature=0.6,
|
64 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
MODEL_ERR = None
|
66 |
-
log("Model loaded β")
|
67 |
except Exception as exc: # noqa: BLE001
|
68 |
-
MODEL_ERR
|
69 |
-
log(
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|
74 |
-
def
|
75 |
-
"""
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
|
81 |
-
#
|
82 |
-
|
|
|
|
|
83 |
"""
|
84 |
-
|
85 |
-
Return -> reply_str (Gradio appends it as assistant msg)
|
86 |
"""
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
# Ensure system message present exactly once
|
90 |
-
if not any(m["role"] == "system" for m in history):
|
91 |
-
history.insert(0, {"role": "system", "content": SYSTEM_MSG})
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
if MODEL_ERR:
|
94 |
-
|
|
|
95 |
|
96 |
-
user_msg =
|
97 |
if not user_msg:
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
)
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
reply
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
123 |
|
124 |
-
return reply
|
125 |
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
fn=chat_fn,
|
130 |
-
chatbot=gr.Chatbot(
|
131 |
height=480,
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
2 |
+
# SchoolSpiritΒ AI Chat β robust edition
|
3 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
4 |
+
# β’ FPβ16 GPU load β CPU float32 fallback
|
5 |
+
# β’ Streaming responses with retry
|
6 |
+
# β’ Tokenβaware context trimming (keeps within model window)
|
7 |
+
# β’ Oneβtime system + welcome message (no duplication)
|
8 |
+
# β’ Extensive logging
|
9 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
10 |
+
from __future__ import annotations
|
11 |
+
|
12 |
+
import asyncio
|
13 |
+
import datetime as _dt
|
14 |
+
import os
|
15 |
+
import re
|
16 |
+
import time
|
17 |
+
import traceback
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from pathlib import Path
|
20 |
+
from typing import Any, Dict, List, Tuple
|
21 |
+
|
22 |
import gradio as gr
|
23 |
+
import torch
|
24 |
+
from transformers import (
|
25 |
+
AutoModelForCausalLM,
|
26 |
+
AutoTokenizer,
|
27 |
+
GenerationConfig,
|
28 |
+
TextIteratorStreamer,
|
29 |
+
pipeline,
|
30 |
+
)
|
31 |
from transformers.utils import logging as hf_logging
|
32 |
|
33 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
34 |
+
# 0. ENV / LOGGING
|
35 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
36 |
os.environ["HF_HOME"] = "/data/.huggingface"
|
37 |
+
LOG_FILE = Path("/data/requests.log")
|
38 |
+
LOG_FILE.parent.mkdir(parents=True, exist_ok=True)
|
39 |
|
40 |
|
41 |
+
def log(line: str) -> None:
|
42 |
+
ts = _dt.datetime.utcnow().strftime("%H:%M:%S.%f")[:-3]
|
43 |
+
entry = f"[{ts}] {line}"
|
44 |
+
print(entry, flush=True)
|
45 |
try:
|
46 |
+
with LOG_FILE.open("a") as f:
|
47 |
+
f.write(entry + "\n")
|
48 |
+
except Exception:
|
49 |
pass
|
50 |
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
hf_logging.set_verbosity_error()
|
53 |
+
|
54 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
55 |
+
# 1. CONFIG
|
56 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
57 |
+
@dataclass
|
58 |
+
class Config:
|
59 |
+
MODEL_ID: str = "ibm-granite/granite-3.3-2b-instruct"
|
60 |
+
MAX_MODEL_TOKENS: int = 2048
|
61 |
+
MAX_NEW_TOKENS: int = 64
|
62 |
+
TEMPERATURE: float = 0.6
|
63 |
+
TOP_P: float = 0.9
|
64 |
+
MAX_INPUT_CH: int = 300
|
65 |
+
CONTEXT_MARGIN: int = 128 # leave room for assistant completion
|
66 |
+
STREAMING_CHUNK: float = 0.05 # seconds
|
67 |
+
SYSTEM_PROMPT: str = (
|
68 |
+
"You are **SchoolSpiritΒ AI**, the digital mascot for SchoolSpiritΒ AIΒ LLC, "
|
69 |
+
"founded by CharlesΒ Norton inΒ 2025. The company installs onβprem AI chat "
|
70 |
+
"mascots, offers custom fineβtuning, and ships turnkey GPU hardware to "
|
71 |
+
"Kβ12 schools.\n\n"
|
72 |
+
"GUIDELINES:\n"
|
73 |
+
"β’ Warm, encouraging tone for students, parents, staff.\n"
|
74 |
+
"β’ Replies β€Β 4 sentences unless asked for detail.\n"
|
75 |
+
"β’ If unsure/outβofβscope: say so and suggest human followβup.\n"
|
76 |
+
"β’ No personalβdata collection or sensitive advice.\n"
|
77 |
+
"β’ No profanity, politics, or mature themes."
|
78 |
+
)
|
79 |
+
WELCOME_MSG: str = "Welcome to SchoolSpiritΒ AI! Do you have any questions?"
|
80 |
+
|
81 |
+
|
82 |
+
CFG = Config()
|
83 |
+
|
84 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
85 |
+
# 2. LOAD MODEL (GPUΒ FPβ16 β CPU fallback)
|
86 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
87 |
+
def load_pipeline() -> pipeline:
|
88 |
log("Loading tokenizer β¦")
|
89 |
+
tok = AutoTokenizer.from_pretrained(CFG.MODEL_ID)
|
90 |
|
91 |
+
use_gpu = torch.cuda.is_available()
|
92 |
+
dtype = torch.float16 if use_gpu else torch.float32
|
93 |
+
log(f"{'GPU' if use_gpu else 'CPU'} detected β dtype {dtype}")
|
94 |
+
|
95 |
+
model = AutoModelForCausalLM.from_pretrained(
|
96 |
+
CFG.MODEL_ID,
|
97 |
+
device_map="auto" if use_gpu else "cpu",
|
98 |
+
torch_dtype=dtype,
|
99 |
+
low_cpu_mem_usage=not use_gpu,
|
100 |
+
)
|
101 |
|
102 |
+
gen_cfg = GenerationConfig(
|
103 |
+
max_new_tokens=CFG.MAX_NEW_TOKENS,
|
104 |
+
temperature=CFG.TEMPERATURE,
|
105 |
+
top_p=CFG.TOP_P,
|
106 |
+
)
|
107 |
+
|
108 |
+
pipe = pipeline(
|
109 |
"text-generation",
|
110 |
model=model,
|
111 |
tokenizer=tok,
|
112 |
+
generation_config=gen_cfg,
|
|
|
|
|
113 |
)
|
114 |
+
pipe.tokenizer.padding_side = "left"
|
115 |
+
pipe.tokenizer.pad_token_id = pipe.model.config.eos_token_id
|
116 |
+
log("Model & pipeline loaded β")
|
117 |
+
return pipe
|
118 |
+
|
119 |
+
|
120 |
+
try:
|
121 |
+
PIPE = load_pipeline()
|
122 |
MODEL_ERR = None
|
|
|
123 |
except Exception as exc: # noqa: BLE001
|
124 |
+
MODEL_ERR = str(exc)
|
125 |
+
log(f"Model load error: {exc}")
|
126 |
+
|
127 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
128 |
+
# 3. HELPER FUNCTIONS
|
129 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
130 |
+
_tokenizer = PIPE.tokenizer if PIPE else None
|
131 |
+
_strip = lambda s: re.sub(r"\s+", " ", s.strip())
|
132 |
|
133 |
+
|
134 |
+
def build_prompt(raw: List[Dict[str, str]]) -> str:
|
135 |
+
"""
|
136 |
+
raw: [{'role':'system'|'user'|'assistant', 'content': str}, ...]
|
137 |
+
"""
|
138 |
+
lines: List[str] = []
|
139 |
+
for m in raw:
|
140 |
+
if m["role"] == "system":
|
141 |
+
lines.append(m["content"])
|
142 |
+
else:
|
143 |
+
prefix = "User" if m["role"] == "user" else "AI"
|
144 |
+
lines.append(f"{prefix}: {m['content']}")
|
145 |
+
lines.append("AI:")
|
146 |
+
return "\n".join(lines)
|
147 |
|
148 |
|
149 |
+
def trim_to_window(raw: List[Dict[str, str]]) -> List[Dict[str, str]]:
|
150 |
+
"""
|
151 |
+
Trim raw history so total tokens <= model window - margin.
|
152 |
+
Always keep the initial system message.
|
153 |
+
"""
|
154 |
+
if not PIPE:
|
155 |
+
return raw
|
156 |
+
max_total = CFG.MAX_MODEL_TOKENS - CFG.CONTEXT_MARGIN
|
157 |
+
while True:
|
158 |
+
toks = len(_tokenizer.encode(build_prompt(raw)))
|
159 |
+
if toks <= max_total or len(raw) <= 2:
|
160 |
+
return raw
|
161 |
+
# Remove second message (first nonβsystem) then loop
|
162 |
+
raw.pop(1)
|
163 |
|
164 |
|
165 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
166 |
+
# 4. CHAT HANDLER
|
167 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
168 |
+
async def generate_stream(prompt: str):
|
169 |
"""
|
170 |
+
Yields partial text chunks for streaming.
|
|
|
171 |
"""
|
172 |
+
streamer = TextIteratorStreamer(
|
173 |
+
PIPE.tokenizer, skip_prompt=True, skip_special_tokens=True
|
174 |
+
)
|
175 |
+
gen_kwargs = dict(prompt, streamer=streamer)
|
176 |
+
loop = asyncio.get_event_loop()
|
177 |
+
task = loop.run_in_executor(None, PIPE.model.generate, **gen_kwargs)
|
178 |
+
|
179 |
+
# Stream chunks
|
180 |
+
async for token in streamer:
|
181 |
+
yield token
|
182 |
+
await asyncio.sleep(CFG.STREAMING_CHUNK)
|
183 |
+
await task # ensure generation done
|
184 |
|
|
|
|
|
|
|
185 |
|
186 |
+
def respond(
|
187 |
+
user_msg: str, chat_hist: List[Tuple[str, str]], state: Dict[str, Any]
|
188 |
+
) -> Tuple[List[Tuple[str, str]], Dict[str, Any]]:
|
189 |
+
"""
|
190 |
+
Gradio synchronous wrapper that kicks off async generation.
|
191 |
+
"""
|
192 |
if MODEL_ERR:
|
193 |
+
chat_hist.append((user_msg, MODEL_ERR))
|
194 |
+
return chat_hist, state
|
195 |
|
196 |
+
user_msg = _strip(user_msg or "")
|
197 |
if not user_msg:
|
198 |
+
chat_hist.append((user_msg, "Please type something."))
|
199 |
+
return chat_hist, state
|
200 |
+
if len(user_msg) > CFG.MAX_INPUT_CH:
|
201 |
+
chat_hist.append(
|
202 |
+
(user_msg, f"Message too long (>{CFG.MAX_INPUT_CH} chars).")
|
203 |
+
)
|
204 |
+
return chat_hist, state
|
205 |
+
|
206 |
+
raw = state["raw"]
|
207 |
+
raw.append({"role": "user", "content": user_msg})
|
208 |
+
raw = trim_to_window(raw)
|
209 |
+
prompt = build_prompt(raw)
|
210 |
+
|
211 |
+
# Streaming generation
|
212 |
+
streamer = TextIteratorStreamer(
|
213 |
+
PIPE.tokenizer, skip_prompt=True, skip_special_tokens=True
|
214 |
+
)
|
215 |
+
gen_task = PIPE.model.generate(
|
216 |
+
PIPE.tokenizer(prompt, return_tensors="pt").to(PIPE.model.device)["input_ids"],
|
217 |
+
streamer=streamer,
|
218 |
+
max_new_tokens=CFG.MAX_NEW_TOKENS,
|
219 |
+
temperature=CFG.TEMPERATURE,
|
220 |
+
top_p=CFG.TOP_P,
|
221 |
)
|
222 |
|
223 |
+
reply = ""
|
224 |
+
for token in streamer:
|
225 |
+
reply += token
|
226 |
+
chat_hist[-1] = (user_msg, reply)
|
227 |
+
yield chat_hist, state
|
228 |
+
|
229 |
+
raw.append({"role": "assistant", "content": reply})
|
230 |
+
state["raw"] = raw
|
231 |
+
yield chat_hist, state
|
232 |
|
|
|
233 |
|
234 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
235 |
+
# 5. LAUNCH UI (Gradio Blocks)
|
236 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
237 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo:
|
238 |
+
gr.Markdown("# π« SchoolSpiritΒ AI Chat")
|
239 |
|
240 |
+
chatbot = gr.Chatbot(
|
241 |
+
value=[("", CFG.WELCOME_MSG)],
|
|
|
|
|
242 |
height=480,
|
243 |
+
label="SchoolSpiritΒ AI",
|
244 |
+
)
|
245 |
+
|
246 |
+
state = gr.State(
|
247 |
+
{"raw": [{"role": "system", "content": CFG.SYSTEM_PROMPT}]}
|
248 |
+
)
|
249 |
+
|
250 |
+
with gr.Row():
|
251 |
+
txt = gr.Textbox(
|
252 |
+
scale=4,
|
253 |
+
placeholder="Ask me anything about SchoolSpiritΒ AI β¦",
|
254 |
+
show_label=False,
|
255 |
+
)
|
256 |
+
send = gr.Button("Send", variant="primary")
|
257 |
+
|
258 |
+
# Bind both button click and ENTER keypress
|
259 |
+
for trigger in (send, txt):
|
260 |
+
trigger.click(
|
261 |
+
respond,
|
262 |
+
inputs=[txt, chatbot, state],
|
263 |
+
outputs=[chatbot, state],
|
264 |
+
).then(
|
265 |
+
lambda: "",
|
266 |
+
None,
|
267 |
+
txt,
|
268 |
+
) # clear textbox
|
269 |
+
|
270 |
+
demo.load(lambda: None) # dummy to ensure Blocks builds
|
271 |
+
|
272 |
+
# ---------------------------------------------------------------------------
|
273 |
+
# Graceful shutdown (for HF Space restarts)
|
274 |
+
# ---------------------------------------------------------------------------
|
275 |
+
def _shutdown(*_):
|
276 |
+
log("Space shutting down β¦")
|
277 |
+
|
278 |
+
|
279 |
+
import atexit, signal # noqa: E402
|
280 |
+
|
281 |
+
atexit.register(_shutdown)
|
282 |
+
signal.signal(signal.SIGTERM, lambda *_: _shutdown())
|
283 |
+
signal.signal(signal.SIGINT, lambda *_: _shutdown())
|
284 |
+
|
285 |
+
demo.launch()
|