Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -3,9 +3,7 @@ import gradio as gr
|
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
from transformers.utils import logging as hf_logging
|
5 |
|
6 |
-
#
|
7 |
-
# Logging helpers
|
8 |
-
# ---------------------------------------------------------------------------
|
9 |
os.environ["HF_HOME"] = "/data/.huggingface"
|
10 |
LOG_FILE = "/data/requests.log"
|
11 |
|
@@ -21,48 +19,39 @@ def log(msg: str):
|
|
21 |
pass
|
22 |
|
23 |
|
24 |
-
#
|
25 |
-
# Configuration
|
26 |
-
# ---------------------------------------------------------------------------
|
27 |
MODEL_ID = "ibm-granite/granite-3.3-2b-instruct"
|
28 |
MAX_TURNS, MAX_TOKENS, MAX_INPUT_CH = 4, 64, 300
|
29 |
|
30 |
SYSTEM_MSG = (
|
31 |
-
"You are **SchoolSpirit
|
32 |
"founded by Charles Norton in 2025. The company installs on‑prem AI chat "
|
33 |
"mascots, offers custom fine‑tuning of language models, and ships turnkey "
|
34 |
-
"
|
35 |
"GUIDELINES:\n"
|
36 |
-
"•
|
37 |
-
"•
|
38 |
-
"• If
|
39 |
-
"•
|
40 |
"• No profanity, politics, or mature themes."
|
41 |
)
|
42 |
WELCOME_MSG = "Welcome to SchoolSpirit AI! Do you have any questions?"
|
43 |
|
44 |
-
#
|
45 |
-
# Load model (GPU FP‑16 if available → CPU fallback)
|
46 |
-
# ---------------------------------------------------------------------------
|
47 |
hf_logging.set_verbosity_error()
|
48 |
try:
|
49 |
log("Loading tokenizer …")
|
50 |
tok = AutoTokenizer.from_pretrained(MODEL_ID)
|
51 |
|
52 |
if torch.cuda.is_available():
|
53 |
-
log("GPU detected →
|
54 |
model = AutoModelForCausalLM.from_pretrained(
|
55 |
-
MODEL_ID,
|
56 |
-
device_map="auto", # put layers on available GPU(s)
|
57 |
-
torch_dtype=torch.float16,
|
58 |
)
|
59 |
else:
|
60 |
-
log("
|
61 |
model = AutoModelForCausalLM.from_pretrained(
|
62 |
-
MODEL_ID,
|
63 |
-
device_map="cpu",
|
64 |
-
torch_dtype="auto",
|
65 |
-
low_cpu_mem_usage=True,
|
66 |
)
|
67 |
|
68 |
gen = pipeline(
|
@@ -80,17 +69,25 @@ except Exception as exc: # noqa: BLE001
|
|
80 |
log(MODEL_ERR)
|
81 |
|
82 |
clean = lambda t: re.sub(r"\s+", " ", t.strip()) or "…"
|
83 |
-
trim = lambda m: m if len(m) <= 1 + MAX_TURNS * 2 else [m[0]] + m[-MAX_TURNS * 2 :]
|
84 |
|
85 |
-
# ---------------------------------------------------------------------------
|
86 |
-
# Chat logic
|
87 |
-
# ---------------------------------------------------------------------------
|
88 |
|
|
|
|
|
|
|
|
|
|
|
89 |
|
|
|
|
|
90 |
def chat_fn(user_msg: str, history: list):
|
|
|
|
|
|
|
|
|
91 |
log(f"User sent {len(user_msg)} chars")
|
92 |
|
93 |
-
|
|
|
94 |
history.insert(0, {"role": "system", "content": SYSTEM_MSG})
|
95 |
|
96 |
if MODEL_ERR:
|
@@ -105,21 +102,21 @@ def chat_fn(user_msg: str, history: list):
|
|
105 |
history.append({"role": "user", "content": user_msg})
|
106 |
history = trim(history)
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
116 |
|
117 |
-
t0 = time.time()
|
118 |
try:
|
119 |
raw = gen(prompt)[0]["generated_text"]
|
120 |
reply = clean(raw.split("AI:", 1)[-1])
|
121 |
reply = re.split(r"\b(?:User:|AI:)", reply, 1)[0].strip()
|
122 |
-
log(f"
|
123 |
except Exception:
|
124 |
log("❌ Inference exception:\n" + traceback.format_exc())
|
125 |
reply = "Sorry—backend crashed. Please try again later."
|
@@ -127,15 +124,13 @@ def chat_fn(user_msg: str, history: list):
|
|
127 |
return reply
|
128 |
|
129 |
|
130 |
-
#
|
131 |
-
# UI
|
132 |
-
# ---------------------------------------------------------------------------
|
133 |
gr.ChatInterface(
|
134 |
fn=chat_fn,
|
135 |
chatbot=gr.Chatbot(
|
136 |
height=480,
|
137 |
type="messages",
|
138 |
-
value=[{"role": "assistant", "content": WELCOME_MSG}],
|
139 |
),
|
140 |
title="SchoolSpirit AI Chat",
|
141 |
theme=gr.themes.Soft(primary_hue="blue"),
|
|
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
from transformers.utils import logging as hf_logging
|
5 |
|
6 |
+
# ---------- Logging ---------------------------------------------------------
|
|
|
|
|
7 |
os.environ["HF_HOME"] = "/data/.huggingface"
|
8 |
LOG_FILE = "/data/requests.log"
|
9 |
|
|
|
19 |
pass
|
20 |
|
21 |
|
22 |
+
# ---------- Config ----------------------------------------------------------
|
|
|
|
|
23 |
MODEL_ID = "ibm-granite/granite-3.3-2b-instruct"
|
24 |
MAX_TURNS, MAX_TOKENS, MAX_INPUT_CH = 4, 64, 300
|
25 |
|
26 |
SYSTEM_MSG = (
|
27 |
+
"You are **SchoolSpirit AI**, the digital mascot for SchoolSpirit AI LLC, "
|
28 |
"founded by Charles Norton in 2025. The company installs on‑prem AI chat "
|
29 |
"mascots, offers custom fine‑tuning of language models, and ships turnkey "
|
30 |
+
"GPU hardware to K‑12 schools.\n\n"
|
31 |
"GUIDELINES:\n"
|
32 |
+
"• Warm, encouraging tone for students, parents, staff.\n"
|
33 |
+
"• Replies ≤ 4 sentences unless asked for detail.\n"
|
34 |
+
"• If unsure/out‑of‑scope: say so & suggest human follow‑up.\n"
|
35 |
+
"• No personal‑data collection or sensitive advice.\n"
|
36 |
"• No profanity, politics, or mature themes."
|
37 |
)
|
38 |
WELCOME_MSG = "Welcome to SchoolSpirit AI! Do you have any questions?"
|
39 |
|
40 |
+
# ---------- Model load (GPU FP‑16 → CPU fallback) ---------------------------
|
|
|
|
|
41 |
hf_logging.set_verbosity_error()
|
42 |
try:
|
43 |
log("Loading tokenizer …")
|
44 |
tok = AutoTokenizer.from_pretrained(MODEL_ID)
|
45 |
|
46 |
if torch.cuda.is_available():
|
47 |
+
log("GPU detected → FP‑16")
|
48 |
model = AutoModelForCausalLM.from_pretrained(
|
49 |
+
MODEL_ID, device_map="auto", torch_dtype=torch.float16
|
|
|
|
|
50 |
)
|
51 |
else:
|
52 |
+
log("CPU fallback")
|
53 |
model = AutoModelForCausalLM.from_pretrained(
|
54 |
+
MODEL_ID, device_map="cpu", torch_dtype="auto", low_cpu_mem_usage=True
|
|
|
|
|
|
|
55 |
)
|
56 |
|
57 |
gen = pipeline(
|
|
|
69 |
log(MODEL_ERR)
|
70 |
|
71 |
clean = lambda t: re.sub(r"\s+", " ", t.strip()) or "…"
|
|
|
72 |
|
|
|
|
|
|
|
73 |
|
74 |
+
def trim(hist: list):
|
75 |
+
"""keep system + last N user/AI pairs"""
|
76 |
+
sys = [m for m in hist if m["role"] == "system"]
|
77 |
+
convo = [m for m in hist if m["role"] != "system"]
|
78 |
+
return sys + convo[-MAX_TURNS * 2 :]
|
79 |
|
80 |
+
|
81 |
+
# ---------- Chat callback ---------------------------------------------------
|
82 |
def chat_fn(user_msg: str, history: list):
|
83 |
+
"""
|
84 |
+
history: list[dict] like [{'role':'assistant','content':...}, ...]
|
85 |
+
Return -> reply_str (Gradio appends it as assistant msg)
|
86 |
+
"""
|
87 |
log(f"User sent {len(user_msg)} chars")
|
88 |
|
89 |
+
# Ensure system message present exactly once
|
90 |
+
if not any(m["role"] == "system" for m in history):
|
91 |
history.insert(0, {"role": "system", "content": SYSTEM_MSG})
|
92 |
|
93 |
if MODEL_ERR:
|
|
|
102 |
history.append({"role": "user", "content": user_msg})
|
103 |
history = trim(history)
|
104 |
|
105 |
+
prompt = "\n".join(
|
106 |
+
[
|
107 |
+
m["content"]
|
108 |
+
if m["role"] == "system"
|
109 |
+
else f'{"User" if m["role"]=="user" else "AI"}: {m["content"]}'
|
110 |
+
for m in history
|
111 |
+
]
|
112 |
+
+ ["AI:"]
|
113 |
+
)
|
114 |
|
|
|
115 |
try:
|
116 |
raw = gen(prompt)[0]["generated_text"]
|
117 |
reply = clean(raw.split("AI:", 1)[-1])
|
118 |
reply = re.split(r"\b(?:User:|AI:)", reply, 1)[0].strip()
|
119 |
+
log(f"Reply {len(reply)} chars")
|
120 |
except Exception:
|
121 |
log("❌ Inference exception:\n" + traceback.format_exc())
|
122 |
reply = "Sorry—backend crashed. Please try again later."
|
|
|
124 |
return reply
|
125 |
|
126 |
|
127 |
+
# ---------- UI --------------------------------------------------------------
|
|
|
|
|
128 |
gr.ChatInterface(
|
129 |
fn=chat_fn,
|
130 |
chatbot=gr.Chatbot(
|
131 |
height=480,
|
132 |
type="messages",
|
133 |
+
value=[{"role": "assistant", "content": WELCOME_MSG}], # one‑time welcome
|
134 |
),
|
135 |
title="SchoolSpirit AI Chat",
|
136 |
theme=gr.themes.Soft(primary_hue="blue"),
|