petergpt's picture
added logging
efae294 verified
raw
history blame
4.88 kB
import cv2
import gradio as gr
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import gdown
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
import time
os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")
# project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *
#Helpers
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Download official weights
if not os.path.exists("saved_models"):
os.mkdir("saved_models")
os.system("mv isnet.pth saved_models/")
class GOSNormalize(object):
'''
Normalize the Image using torch.transforms
'''
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
self.mean = mean
self.std = std
def __call__(self,image):
image = normalize(image,self.mean,self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
def load_image(im_path, hypar):
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im,255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape
def build_model(hypar, device):
net = hypar["model"]
# convert to half precision if needed
if(hypar["model_digit"]=="half"):
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if(hypar["restore_model"]!=""):
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
'''
Given an Image, predict the mask
'''
net.eval()
if(hypar["model_digit"]=="full"):
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
ds_val = net(inputs_val_v)[0]
pred_val = ds_val[0][0,:,:,:]
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),
(shapes_val[0][0],shapes_val[0][1]),
mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val-mi)/(ma-mi) # normalize to 0~1
if device == 'cuda':
torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8)
# Set Parameters
hypar = {}
hypar["model_path"] ="./saved_models"
hypar["restore_model"] = "isnet.pth"
hypar["interm_sup"] = False
hypar["model_digit"] = "full"
hypar["seed"] = 0
hypar["cache_size"] = [1024, 1024]
hypar["input_size"] = [1024, 1024]
hypar["crop_size"] = [1024, 1024]
hypar["model"] = ISNetDIS()
# Build Model
net = build_model(hypar, device)
def inference(image, logs):
start_time = time.time()
image_tensor, orig_size = load_image(image, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(image).convert("RGB")
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
end_time = time.time()
elapsed = round(end_time - start_time, 2)
# Update and return logs
logs = logs or ""
logs += f"Processed in {elapsed} seconds.\n"
# Return (gallery output), the logs state, and the logs display
return [im_rgba, pil_mask], logs, logs
title = "Highly Accurate Dichotomous Image Segmentation"
description = (
"This is an unofficial demo for DIS, a model that can remove the background from a given image. "
"To use it, simply upload your image, or click one of the examples to load them. "
"Read more at the links below.<br>"
"GitHub: https://github.com/xuebinqin/DIS<br>"
"Telegram bot: https://t.me/restoration_photo_bot<br>"
"[![](https://img.shields.io/twitter/follow/DoEvent?label=@DoEvent&style=social)](https://twitter.com/DoEvent)"
)
article = (
"<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' "
"alt='visitor badge'></center></div>"
)
interface = gr.Interface(
fn=inference,
inputs=[gr.Image(type='filepath'), gr.State()],
outputs=[
gr.Gallery(format="png"),
gr.State(),
gr.Textbox(label="Logs", lines=6)
],
examples=[['robot.png'], ['ship.png']],
title=title,
description=description,
article=article,
flagging_mode="never",
cache_mode="lazy",
).queue().launch(show_api=True, show_error=True)