File size: 4,875 Bytes
2e2f07b
 
 
 
 
 
 
 
 
 
 
 
 
efae294
2e2f07b
 
 
 
 
 
 
 
 
 
 
 
 
 
afd2efd
2e2f07b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efae294
 
2e2f07b
efae294
2e2f07b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efae294
 
 
 
 
 
2e2f07b
 
 
efae294
2e2f07b
efae294
 
 
2e2f07b
efae294
 
 
 
 
 
2e2f07b
efae294
 
 
2e2f07b
 
efae294
2e2f07b
 
efae294
 
 
 
 
2e2f07b
efae294
 
2e2f07b
efae294
 
 
 
 
 
 
 
 
2e2f07b
efae294
 
2e2f07b
 
efae294
 
 
 
 
 
 
 
 
 
 
 
2e2f07b
 
 
efae294
 
 
 
 
 
2e2f07b
 
 
 
10bcd3a
 
efae294
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import cv2
import gradio as gr
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import gdown
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
import time

os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")

# project imports
from data_loader_cache import normalize, im_reader, im_preprocess 
from models import *

#Helpers
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Download official weights
if not os.path.exists("saved_models"):
    os.mkdir("saved_models")
    os.system("mv isnet.pth saved_models/")
    
class GOSNormalize(object):
    '''
    Normalize the Image using torch.transforms
    '''
    def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
        self.mean = mean
        self.std = std

    def __call__(self,image):
        image = normalize(image,self.mean,self.std)
        return image

transform =  transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])

def load_image(im_path, hypar):
    im = im_reader(im_path)
    im, im_shp = im_preprocess(im, hypar["cache_size"])
    im = torch.divide(im,255.0)
    shape = torch.from_numpy(np.array(im_shp))
    return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape

def build_model(hypar, device):
    net = hypar["model"]

    # convert to half precision if needed
    if(hypar["model_digit"]=="half"):
        net.half()
        for layer in net.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.float()

    net.to(device)

    if(hypar["restore_model"]!=""):
        net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
        net.to(device)
    net.eval()  
    return net

def predict(net,  inputs_val, shapes_val, hypar, device):
    '''
    Given an Image, predict the mask
    '''
    net.eval()

    if(hypar["model_digit"]=="full"):
        inputs_val = inputs_val.type(torch.FloatTensor)
    else:
        inputs_val = inputs_val.type(torch.HalfTensor)

    inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) 
    ds_val = net(inputs_val_v)[0]
    pred_val = ds_val[0][0,:,:,:]
    pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),
                                        (shapes_val[0][0],shapes_val[0][1]),
                                        mode='bilinear'))

    ma = torch.max(pred_val)
    mi = torch.min(pred_val)
    pred_val = (pred_val-mi)/(ma-mi) # normalize to 0~1

    if device == 'cuda': 
        torch.cuda.empty_cache()
    return (pred_val.detach().cpu().numpy()*255).astype(np.uint8)

# Set Parameters
hypar = {} 
hypar["model_path"] ="./saved_models"
hypar["restore_model"] = "isnet.pth"
hypar["interm_sup"] = False
hypar["model_digit"] = "full"
hypar["seed"] = 0
hypar["cache_size"] = [1024, 1024]
hypar["input_size"] = [1024, 1024]
hypar["crop_size"] = [1024, 1024]
hypar["model"] = ISNetDIS()

# Build Model
net = build_model(hypar, device)

def inference(image, logs):
    start_time = time.time()
    
    image_tensor, orig_size = load_image(image, hypar) 
    mask = predict(net, image_tensor, orig_size, hypar, device)
  
    pil_mask = Image.fromarray(mask).convert('L')
    im_rgb = Image.open(image).convert("RGB")

    im_rgba = im_rgb.copy()
    im_rgba.putalpha(pil_mask)
    
    end_time = time.time()
    elapsed = round(end_time - start_time, 2)
    
    # Update and return logs
    logs = logs or ""
    logs += f"Processed in {elapsed} seconds.\n"

    # Return (gallery output), the logs state, and the logs display
    return [im_rgba, pil_mask], logs, logs

title = "Highly Accurate Dichotomous Image Segmentation"
description = (
    "This is an unofficial demo for DIS, a model that can remove the background from a given image. "
    "To use it, simply upload your image, or click one of the examples to load them. "
    "Read more at the links below.<br>"
    "GitHub: https://github.com/xuebinqin/DIS<br>"
    "Telegram bot: https://t.me/restoration_photo_bot<br>"
    "[![](https://img.shields.io/twitter/follow/DoEvent?label=@DoEvent&style=social)](https://twitter.com/DoEvent)"
)
article = (
    "<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' "
    "alt='visitor badge'></center></div>"
)

interface = gr.Interface(
    fn=inference,
    inputs=[gr.Image(type='filepath'), gr.State()],
    outputs=[
        gr.Gallery(format="png"),
        gr.State(),
        gr.Textbox(label="Logs", lines=6)
    ],
    examples=[['robot.png'], ['ship.png']],
    title=title,
    description=description,
    article=article,
    flagging_mode="never",
    cache_mode="lazy",
).queue().launch(show_api=True, show_error=True)