petergpt's picture
multiple images
66a61d0 verified
raw
history blame
5.39 kB
import cv2
import gradio as gr
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import matplotlib.pyplot as plt
import warnings
import time
warnings.filterwarnings("ignore")
os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")
# project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Download official weights
if not os.path.exists("saved_models"):
os.mkdir("saved_models")
os.system("mv isnet.pth saved_models/")
class GOSNormalize(object):
'''
Normalize the Image using torch.transforms
'''
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
self.mean = mean
self.std = std
def __call__(self,image):
image = normalize(image,self.mean,self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
def load_image(im_path, hypar):
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im, 255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0)
def build_model(hypar, device):
net = hypar["model"]
# convert to half precision if needed
if(hypar["model_digit"]=="half"):
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if(hypar["restore_model"]!=""):
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
net.eval()
if(hypar["model_digit"]=="full"):
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
ds_val = net(inputs_val_v)[0]
pred_val = ds_val[0][0,:,:,:]
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0),
(shapes_val[0][0], shapes_val[0][1]),
mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val - mi) / (ma - mi + 1e-8) # normalize to 0~1, +1e-8 to avoid div by zero
if device == 'cuda':
torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)
# Parameters
hypar = {}
hypar["model_path"] = "./saved_models"
hypar["restore_model"] = "isnet.pth"
hypar["interm_sup"] = False
hypar["model_digit"] = "full"
hypar["seed"] = 0
hypar["cache_size"] = [1024, 1024]
hypar["input_size"] = [1024, 1024]
hypar["crop_size"] = [1024, 1024]
hypar["model"] = ISNetDIS()
# Build Model
net = build_model(hypar, device)
def inference(images, logs):
start_time = time.time()
# If user didn't upload images, just return empty
if not images:
return [], logs, logs
processed_pairs = []
for img_path in images:
image_tensor, orig_size = load_image(img_path, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(img_path).convert("RGB")
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
processed_pairs.append([im_rgba, pil_mask])
end_time = time.time()
elapsed = round(end_time - start_time, 2)
# Flatten the list so that we can display all images in a single Gallery
final_images = []
for pair in processed_pairs:
final_images.extend(pair)
# Update logs
logs = logs or ""
logs += f"Processed {len(processed_pairs)} image(s) in {elapsed} seconds.\n"
return final_images, logs, logs
title = "Highly Accurate Dichotomous Image Segmentation"
description = (
"This is an unofficial demo for DIS, a model that can remove the background from a given image. "
"To use it, simply upload up to 3 images, or click one of the examples to load them. "
"Read more at the links below.<br>"
"GitHub: https://github.com/xuebinqin/DIS<br>"
"Telegram bot: https://t.me/restoration_photo_bot<br>"
"[![](https://img.shields.io/twitter/follow/DoEvent?label=@DoEvent&style=social)](https://twitter.com/DoEvent)"
)
article = (
"<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' "
"alt='visitor badge'></center></div>"
)
interface = gr.Interface(
fn=inference,
inputs=[gr.Image(
type='filepath',
label='Images (up to 3)',
multiple=True,
max_count=3
),
gr.State()],
outputs=[
gr.Gallery(label="Output (rgba + mask)"),
gr.State(),
gr.Textbox(label="Logs", lines=6)
],
examples=[['robot.png'], ['ship.png']], # for multi-image examples, pass a list like ['robot.png','ship.png']
title=title,
description=description,
article=article,
flagging_mode="never",
cache_mode="lazy",
).queue().launch(show_api=True, show_error=True)