File size: 5,388 Bytes
66a61d0
2e2f07b
 
 
 
 
 
 
 
 
 
 
efae294
66a61d0
2e2f07b
 
 
 
 
 
 
 
 
 
 
 
 
afd2efd
66a61d0
2e2f07b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66a61d0
2e2f07b
66a61d0
2e2f07b
efae294
 
2e2f07b
efae294
2e2f07b
 
 
 
 
 
 
 
 
 
 
 
 
 
66a61d0
2e2f07b
 
 
 
 
 
 
efae294
 
 
66a61d0
 
efae294
2e2f07b
 
 
66a61d0
2e2f07b
efae294
 
66a61d0
2e2f07b
66a61d0
 
 
efae294
 
 
2e2f07b
efae294
 
 
2e2f07b
 
efae294
2e2f07b
 
66a61d0
efae294
66a61d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efae294
 
 
66a61d0
 
 
 
 
 
 
efae294
66a61d0
2e2f07b
66a61d0
2e2f07b
 
efae294
 
66a61d0
efae294
 
 
 
 
 
 
 
 
2e2f07b
 
 
66a61d0
 
 
 
 
 
 
efae294
66a61d0
efae294
 
 
66a61d0
2e2f07b
 
 
10bcd3a
 
efae294
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

import cv2
import gradio as gr
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import matplotlib.pyplot as plt
import warnings
import time
warnings.filterwarnings("ignore")

os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")

# project imports
from data_loader_cache import normalize, im_reader, im_preprocess 
from models import *

device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Download official weights
if not os.path.exists("saved_models"):
    os.mkdir("saved_models")
    os.system("mv isnet.pth saved_models/")

class GOSNormalize(object):
    '''
    Normalize the Image using torch.transforms
    '''
    def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
        self.mean = mean
        self.std = std

    def __call__(self,image):
        image = normalize(image,self.mean,self.std)
        return image

transform =  transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])

def load_image(im_path, hypar):
    im = im_reader(im_path)
    im, im_shp = im_preprocess(im, hypar["cache_size"])
    im = torch.divide(im, 255.0)
    shape = torch.from_numpy(np.array(im_shp))
    return transform(im).unsqueeze(0), shape.unsqueeze(0)

def build_model(hypar, device):
    net = hypar["model"]

    # convert to half precision if needed
    if(hypar["model_digit"]=="half"):
        net.half()
        for layer in net.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.float()

    net.to(device)

    if(hypar["restore_model"]!=""):
        net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
        net.to(device)
    net.eval()  
    return net

def predict(net, inputs_val, shapes_val, hypar, device):
    net.eval()

    if(hypar["model_digit"]=="full"):
        inputs_val = inputs_val.type(torch.FloatTensor)
    else:
        inputs_val = inputs_val.type(torch.HalfTensor)

    inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) 
    ds_val = net(inputs_val_v)[0]
    pred_val = ds_val[0][0,:,:,:]
    pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0),
                                        (shapes_val[0][0], shapes_val[0][1]),
                                        mode='bilinear'))

    ma = torch.max(pred_val)
    mi = torch.min(pred_val)
    pred_val = (pred_val - mi) / (ma - mi + 1e-8)  # normalize to 0~1, +1e-8 to avoid div by zero

    if device == 'cuda': 
        torch.cuda.empty_cache()
    return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)

# Parameters
hypar = {}
hypar["model_path"] = "./saved_models"
hypar["restore_model"] = "isnet.pth"
hypar["interm_sup"] = False
hypar["model_digit"] = "full"
hypar["seed"] = 0
hypar["cache_size"] = [1024, 1024]
hypar["input_size"] = [1024, 1024]
hypar["crop_size"] = [1024, 1024]
hypar["model"] = ISNetDIS()

# Build Model
net = build_model(hypar, device)

def inference(images, logs):
    start_time = time.time()

    # If user didn't upload images, just return empty
    if not images:
        return [], logs, logs

    processed_pairs = []
    for img_path in images:
        image_tensor, orig_size = load_image(img_path, hypar)
        mask = predict(net, image_tensor, orig_size, hypar, device)

        pil_mask = Image.fromarray(mask).convert('L')
        im_rgb = Image.open(img_path).convert("RGB")
        im_rgba = im_rgb.copy()
        im_rgba.putalpha(pil_mask)
        processed_pairs.append([im_rgba, pil_mask])
    
    end_time = time.time()
    elapsed = round(end_time - start_time, 2)

    # Flatten the list so that we can display all images in a single Gallery
    final_images = []
    for pair in processed_pairs:
        final_images.extend(pair)

    # Update logs
    logs = logs or ""
    logs += f"Processed {len(processed_pairs)} image(s) in {elapsed} seconds.\n"

    return final_images, logs, logs

title = "Highly Accurate Dichotomous Image Segmentation"
description = (
    "This is an unofficial demo for DIS, a model that can remove the background from a given image. "
    "To use it, simply upload up to 3 images, or click one of the examples to load them. "
    "Read more at the links below.<br>"
    "GitHub: https://github.com/xuebinqin/DIS<br>"
    "Telegram bot: https://t.me/restoration_photo_bot<br>"
    "[![](https://img.shields.io/twitter/follow/DoEvent?label=@DoEvent&style=social)](https://twitter.com/DoEvent)"
)
article = (
    "<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' "
    "alt='visitor badge'></center></div>"
)

interface = gr.Interface(
    fn=inference,
    inputs=[gr.Image(
                type='filepath', 
                label='Images (up to 3)', 
                multiple=True, 
                max_count=3
            ), 
            gr.State()],
    outputs=[
        gr.Gallery(label="Output (rgba + mask)"),
        gr.State(),
        gr.Textbox(label="Logs", lines=6)
    ],
    examples=[['robot.png'], ['ship.png']],  # for multi-image examples, pass a list like ['robot.png','ship.png']
    title=title,
    description=description,
    article=article,
    flagging_mode="never",
    cache_mode="lazy",
).queue().launch(show_api=True, show_error=True)