Spaces:
Sleeping
Sleeping
File size: 5,388 Bytes
66a61d0 2e2f07b efae294 66a61d0 2e2f07b afd2efd 66a61d0 2e2f07b 66a61d0 2e2f07b 66a61d0 2e2f07b efae294 2e2f07b efae294 2e2f07b 66a61d0 2e2f07b efae294 66a61d0 efae294 2e2f07b 66a61d0 2e2f07b efae294 66a61d0 2e2f07b 66a61d0 efae294 2e2f07b efae294 2e2f07b efae294 2e2f07b 66a61d0 efae294 66a61d0 efae294 66a61d0 efae294 66a61d0 2e2f07b 66a61d0 2e2f07b efae294 66a61d0 efae294 2e2f07b 66a61d0 efae294 66a61d0 efae294 66a61d0 2e2f07b 10bcd3a efae294 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import cv2
import gradio as gr
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import matplotlib.pyplot as plt
import warnings
import time
warnings.filterwarnings("ignore")
os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")
# project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Download official weights
if not os.path.exists("saved_models"):
os.mkdir("saved_models")
os.system("mv isnet.pth saved_models/")
class GOSNormalize(object):
'''
Normalize the Image using torch.transforms
'''
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
self.mean = mean
self.std = std
def __call__(self,image):
image = normalize(image,self.mean,self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
def load_image(im_path, hypar):
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im, 255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0)
def build_model(hypar, device):
net = hypar["model"]
# convert to half precision if needed
if(hypar["model_digit"]=="half"):
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if(hypar["restore_model"]!=""):
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
net.eval()
if(hypar["model_digit"]=="full"):
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
ds_val = net(inputs_val_v)[0]
pred_val = ds_val[0][0,:,:,:]
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0),
(shapes_val[0][0], shapes_val[0][1]),
mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val - mi) / (ma - mi + 1e-8) # normalize to 0~1, +1e-8 to avoid div by zero
if device == 'cuda':
torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)
# Parameters
hypar = {}
hypar["model_path"] = "./saved_models"
hypar["restore_model"] = "isnet.pth"
hypar["interm_sup"] = False
hypar["model_digit"] = "full"
hypar["seed"] = 0
hypar["cache_size"] = [1024, 1024]
hypar["input_size"] = [1024, 1024]
hypar["crop_size"] = [1024, 1024]
hypar["model"] = ISNetDIS()
# Build Model
net = build_model(hypar, device)
def inference(images, logs):
start_time = time.time()
# If user didn't upload images, just return empty
if not images:
return [], logs, logs
processed_pairs = []
for img_path in images:
image_tensor, orig_size = load_image(img_path, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(img_path).convert("RGB")
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
processed_pairs.append([im_rgba, pil_mask])
end_time = time.time()
elapsed = round(end_time - start_time, 2)
# Flatten the list so that we can display all images in a single Gallery
final_images = []
for pair in processed_pairs:
final_images.extend(pair)
# Update logs
logs = logs or ""
logs += f"Processed {len(processed_pairs)} image(s) in {elapsed} seconds.\n"
return final_images, logs, logs
title = "Highly Accurate Dichotomous Image Segmentation"
description = (
"This is an unofficial demo for DIS, a model that can remove the background from a given image. "
"To use it, simply upload up to 3 images, or click one of the examples to load them. "
"Read more at the links below.<br>"
"GitHub: https://github.com/xuebinqin/DIS<br>"
"Telegram bot: https://t.me/restoration_photo_bot<br>"
"[](https://twitter.com/DoEvent)"
)
article = (
"<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' "
"alt='visitor badge'></center></div>"
)
interface = gr.Interface(
fn=inference,
inputs=[gr.Image(
type='filepath',
label='Images (up to 3)',
multiple=True,
max_count=3
),
gr.State()],
outputs=[
gr.Gallery(label="Output (rgba + mask)"),
gr.State(),
gr.Textbox(label="Logs", lines=6)
],
examples=[['robot.png'], ['ship.png']], # for multi-image examples, pass a list like ['robot.png','ship.png']
title=title,
description=description,
article=article,
flagging_mode="never",
cache_mode="lazy",
).queue().launch(show_api=True, show_error=True)
|