biomedical / app.py
pendar02's picture
Update app.py
dde1577 verified
raw
history blame
13 kB
import streamlit as st
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from peft import PeftModel
from text_processing import TextProcessor
import gc
import time
from pathlib import Path
# Configure page
st.set_page_config(
page_title="Biomedical Papers Analysis",
page_icon="🔬",
layout="wide"
)
# Initialize session state
if 'processed_data' not in st.session_state:
st.session_state.processed_data = None
if 'summaries' not in st.session_state:
st.session_state.summaries = None
if 'text_processor' not in st.session_state:
st.session_state.text_processor = None
def manage_resources():
"""Clear memory and ensure resources are available"""
# Force garbage collection
gc.collect()
# Clear CUDA cache if available
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Set torch to use CPU
torch.set_num_threads(8) # Use half of available CPU threads for each model
def load_model(model_type):
"""Load appropriate model based on type with resource management"""
manage_resources()
try:
if model_type == "summarize":
base_model = AutoModelForSeq2SeqLM.from_pretrained(
"facebook/bart-large-cnn",
cache_dir="./models",
device_map=None, # Explicitly set to None for CPU
torch_dtype=torch.float32
).to("cpu") # Force CPU
model = PeftModel.from_pretrained(
base_model,
"pendar02/results",
device_map=None, # Explicitly set to None for CPU
torch_dtype=torch.float32,
is_trainable=False # Set to inference mode
).to("cpu") # Force CPU
tokenizer = AutoTokenizer.from_pretrained(
"facebook/bart-large-cnn",
cache_dir="./models"
)
else: # question_focused
base_model = AutoModelForSeq2SeqLM.from_pretrained(
"GanjinZero/biobart-base",
cache_dir="./models",
device_map=None, # Explicitly set to None for CPU
torch_dtype=torch.float32
).to("cpu") # Force CPU
model = PeftModel.from_pretrained(
base_model,
"pendar02/biobart-finetune",
device_map=None, # Explicitly set to None for CPU
torch_dtype=torch.float32,
is_trainable=False # Set to inference mode
).to("cpu") # Force CPU
tokenizer = AutoTokenizer.from_pretrained(
"GanjinZero/biobart-base",
cache_dir="./models"
)
model.eval() # Set to evaluation mode
return model, tokenizer
except Exception as e:
st.error(f"Error loading model: {str(e)}")
raise
@st.cache_data
def process_excel(uploaded_file):
"""Process uploaded Excel file"""
try:
df = pd.read_excel(uploaded_file)
required_columns = ['Abstract', 'Article Title', 'Authors',
'Source Title', 'Publication Year', 'DOI']
# Check required columns
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"Missing required columns: {', '.join(missing_columns)}")
return None
return df[required_columns]
except Exception as e:
st.error(f"Error processing file: {str(e)}")
return None
def preprocess_text(text):
"""Preprocess text to add appropriate formatting before summarization"""
if not isinstance(text, str) or not text.strip():
return text
# Split text into sentences (basic implementation)
sentences = [s.strip() for s in text.replace('. ', '.\n').split('\n')]
# Remove empty sentences
sentences = [s for s in sentences if s]
# Join with proper line breaks
formatted_text = '\n'.join(sentences)
return formatted_text
def generate_summary(text, model, tokenizer):
"""Generate summary for single abstract"""
if not isinstance(text, str) or not text.strip():
return "No abstract available to summarize."
# Preprocess the text first
formatted_text = preprocess_text(text)
inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
with torch.no_grad():
summary_ids = model.generate(
**{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_length": 150,
"min_length": 50,
"num_beams": 4,
"length_penalty": 2.0,
"early_stopping": True
}
)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def generate_focused_summary(question, abstracts, model, tokenizer):
"""Generate focused summary based on question"""
# Preprocess each abstract
formatted_abstracts = [preprocess_text(abstract) for abstract in abstracts]
combined_input = f"Question: {question} Abstracts: " + " [SEP] ".join(formatted_abstracts)
inputs = tokenizer(combined_input, return_tensors="pt", max_length=1024, truncation=True)
with torch.no_grad():
summary_ids = model.generate(
**{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_length": 200,
"min_length": 50,
"num_beams": 4,
"length_penalty": 2.0,
"early_stopping": True
}
)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def main():
st.title("🔬 Biomedical Papers Analysis")
# File upload section
uploaded_file = st.file_uploader(
"Upload Excel file containing papers",
type=['xlsx', 'xls'],
help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
)
if uploaded_file is not None:
# Process Excel file
if st.session_state.processed_data is None:
with st.spinner("Processing file..."):
df = process_excel(uploaded_file)
if df is not None:
st.session_state.processed_data = df.dropna(subset=["Abstract"])
if st.session_state.processed_data is not None:
df = st.session_state.processed_data
st.write(f"📊 Loaded {len(df)} papers")
# Individual Summaries Section
st.header("📝 Individual Paper Summaries")
# Question input before the unified generate button
st.header("❓ Question-focused Summary (Optional)")
question = st.text_input("Enter your research question (optional):")
# Unified generate button
if st.button("Generate Analysis"):
try:
# Step 1: Generate Individual Summaries
if st.session_state.summaries is None:
with st.spinner("Generating individual summaries..."):
model, tokenizer = load_model("summarize")
progress_text = st.empty()
progress_bar = st.progress(0)
summary_display = st.container()
summaries = []
for i, (_, row) in enumerate(df.iterrows()):
progress_text.text(f"Processing paper {i+1} of {len(df)}")
progress_bar.progress((i + 1) / len(df))
summary = generate_summary(row['Abstract'], model, tokenizer)
summaries.append(summary)
with summary_display:
st.write(f"**Paper {i+1}:** {row['Article Title']}")
st.write(summary)
st.divider()
st.session_state.summaries = summaries
# Clear memory after individual summaries
del model
del tokenizer
torch.cuda.empty_cache()
gc.collect()
# Step 2: Generate Question-Focused Summary (only if question is provided)
if question.strip():
with st.spinner("Generating question-focused summary..."):
# Clear memory before question processing
torch.cuda.empty_cache()
gc.collect()
results = st.session_state.text_processor.find_most_relevant_abstracts(
question,
df['Abstract'].tolist(),
top_k=5
)
model, tokenizer = load_model("question_focused")
relevant_abstracts = df['Abstract'].iloc[results['top_indices']].tolist()
focused_summary = generate_focused_summary(
question,
relevant_abstracts,
model,
tokenizer
)
st.subheader("Question-Focused Summary")
st.write(focused_summary)
st.subheader("Most Relevant Papers")
relevant_papers = df.iloc[results['top_indices']][
['Article Title', 'Authors', 'Publication Year', 'DOI']
]
relevant_papers['Relevance Score'] = results['scores']
relevant_papers['Publication Year'] = relevant_papers['Publication Year'].astype(int)
st.dataframe(
relevant_papers,
column_config={
'Publication Year': st.column_config.NumberColumn('Year', format="%d"),
'Relevance Score': st.column_config.NumberColumn('Relevance', format="%.3f")
},
hide_index=True
)
# Clear memory after question processing
del model
del tokenizer
torch.cuda.empty_cache()
gc.collect()
except Exception as e:
st.error(f"Error in analysis: {str(e)}")
# Display sorted summaries if they exist
if st.session_state.summaries is not None:
st.subheader("All Paper Summaries")
sort_options = {
'Article Title': 'Article Title',
'Authors': 'Authors',
'Publication Year': 'Publication Year',
'Source Title': 'Source Title'
}
col1, col2 = st.columns(2)
with col1:
sort_column = st.selectbox("Sort by:", list(sort_options.keys()))
with col2:
ascending = st.checkbox("Ascending order", True)
display_df = df.copy()
display_df['Summary'] = st.session_state.summaries
display_df['Publication Year'] = display_df['Publication Year'].astype(int)
sorted_df = display_df.sort_values(by=sort_options[sort_column], ascending=ascending)
st.dataframe(
sorted_df[['Article Title', 'Authors', 'Source Title',
'Publication Year', 'DOI', 'Summary']],
column_config={
'Article Title': st.column_config.TextColumn('Article Title', width='medium'),
'Authors': st.column_config.TextColumn('Authors', width='medium'),
'Source Title': st.column_config.TextColumn('Source Title', width='medium'),
'Publication Year': st.column_config.NumberColumn('Year', format="%d"),
'DOI': st.column_config.TextColumn('DOI', width='small'),
'Summary': st.column_config.TextColumn('Summary', width='large'),
},
hide_index=True
)
if __name__ == "__main__":
main()