File size: 12,958 Bytes
60b1427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1229bf2
 
 
 
 
 
 
 
 
 
 
 
60b1427
1229bf2
 
 
957d2c2
 
1bd8049
 
1229bf2
dde1577
 
 
 
957d2c2
 
 
dde1577
 
 
 
 
1bd8049
 
 
957d2c2
 
dde1577
1bd8049
1229bf2
dde1577
 
 
 
957d2c2
 
 
dde1577
 
 
 
 
1bd8049
 
 
957d2c2
1bd8049
dde1577
1bd8049
 
 
 
60b1427
 
 
 
 
 
 
6cd4890
60b1427
 
 
 
 
 
6cd4890
60b1427
 
 
 
 
d16f597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60b1427
 
6cd4890
 
 
d16f597
 
 
 
60b1427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c2de78
 
 
60b1427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1229bf2
60b1427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cd4890
1229bf2
 
 
 
60b1427
1229bf2
 
 
 
 
 
 
 
 
 
 
 
 
60b1427
 
1229bf2
60b1427
1229bf2
60b1427
1229bf2
 
 
60b1427
1229bf2
 
 
 
 
 
 
 
60b1427
 
 
1229bf2
60b1427
 
 
 
 
1229bf2
 
 
 
 
 
 
60b1427
 
 
 
 
 
 
 
 
 
6cd4890
60b1427
 
 
 
 
1229bf2
60b1427
 
 
 
 
 
 
1229bf2
60b1427
1229bf2
 
 
 
 
 
 
 
 
 
60b1427
 
 
 
1229bf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60b1427
 
6cd4890
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import streamlit as st
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from peft import PeftModel
from text_processing import TextProcessor
import gc
import time
from pathlib import Path

# Configure page
st.set_page_config(
    page_title="Biomedical Papers Analysis",
    page_icon="πŸ”¬",
    layout="wide"
)

# Initialize session state
if 'processed_data' not in st.session_state:
    st.session_state.processed_data = None
if 'summaries' not in st.session_state:
    st.session_state.summaries = None
if 'text_processor' not in st.session_state:
    st.session_state.text_processor = None

def manage_resources():
    """Clear memory and ensure resources are available"""
    # Force garbage collection
    gc.collect()
    
    # Clear CUDA cache if available
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    
    # Set torch to use CPU
    torch.set_num_threads(8)  # Use half of available CPU threads for each model

def load_model(model_type):
    """Load appropriate model based on type with resource management"""
    manage_resources()
    
    try:
        if model_type == "summarize":
            base_model = AutoModelForSeq2SeqLM.from_pretrained(
                "facebook/bart-large-cnn",
                cache_dir="./models",
                device_map=None,  # Explicitly set to None for CPU
                torch_dtype=torch.float32
            ).to("cpu")  # Force CPU
            
            model = PeftModel.from_pretrained(
                base_model, 
                "pendar02/results",
                device_map=None,  # Explicitly set to None for CPU
                torch_dtype=torch.float32,
                is_trainable=False  # Set to inference mode
            ).to("cpu")  # Force CPU
            
            tokenizer = AutoTokenizer.from_pretrained(
                "facebook/bart-large-cnn",
                cache_dir="./models"
            )
        else:  # question_focused
            base_model = AutoModelForSeq2SeqLM.from_pretrained(
                "GanjinZero/biobart-base",
                cache_dir="./models",
                device_map=None,  # Explicitly set to None for CPU
                torch_dtype=torch.float32
            ).to("cpu")  # Force CPU
            
            model = PeftModel.from_pretrained(
                base_model, 
                "pendar02/biobart-finetune",
                device_map=None,  # Explicitly set to None for CPU
                torch_dtype=torch.float32,
                is_trainable=False  # Set to inference mode
            ).to("cpu")  # Force CPU
            
            tokenizer = AutoTokenizer.from_pretrained(
                "GanjinZero/biobart-base",
                cache_dir="./models"
            )
        
        model.eval()  # Set to evaluation mode
        return model, tokenizer
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        raise

@st.cache_data
def process_excel(uploaded_file):
    """Process uploaded Excel file"""
    try:
        df = pd.read_excel(uploaded_file)
        required_columns = ['Abstract', 'Article Title', 'Authors', 
                            'Source Title', 'Publication Year', 'DOI']
        
        # Check required columns
        missing_columns = [col for col in required_columns if col not in df.columns]
        if missing_columns:
            st.error(f"Missing required columns: {', '.join(missing_columns)}")
            return None
        
        return df[required_columns]
    except Exception as e:
        st.error(f"Error processing file: {str(e)}")
        return None

def preprocess_text(text):
    """Preprocess text to add appropriate formatting before summarization"""
    if not isinstance(text, str) or not text.strip():
        return text
        
    # Split text into sentences (basic implementation)
    sentences = [s.strip() for s in text.replace('. ', '.\n').split('\n')]
    
    # Remove empty sentences
    sentences = [s for s in sentences if s]
    
    # Join with proper line breaks
    formatted_text = '\n'.join(sentences)
    
    return formatted_text

def generate_summary(text, model, tokenizer):
    """Generate summary for single abstract"""
    if not isinstance(text, str) or not text.strip():
        return "No abstract available to summarize."
    
    # Preprocess the text first
    formatted_text = preprocess_text(text)
    
    inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
    
    with torch.no_grad():
        summary_ids = model.generate(
            **{
                "input_ids": inputs["input_ids"],
                "attention_mask": inputs["attention_mask"],
                "max_length": 150,
                "min_length": 50,
                "num_beams": 4,
                "length_penalty": 2.0,
                "early_stopping": True
            }
        )
    
    return tokenizer.decode(summary_ids[0], skip_special_tokens=True)

def generate_focused_summary(question, abstracts, model, tokenizer):
    """Generate focused summary based on question"""
    # Preprocess each abstract
    formatted_abstracts = [preprocess_text(abstract) for abstract in abstracts]
    combined_input = f"Question: {question} Abstracts: " + " [SEP] ".join(formatted_abstracts)
    
    inputs = tokenizer(combined_input, return_tensors="pt", max_length=1024, truncation=True)
    
    with torch.no_grad():
        summary_ids = model.generate(
            **{
                "input_ids": inputs["input_ids"],
                "attention_mask": inputs["attention_mask"],
                "max_length": 200,
                "min_length": 50,
                "num_beams": 4,
                "length_penalty": 2.0,
                "early_stopping": True
            }
        )
    
    return tokenizer.decode(summary_ids[0], skip_special_tokens=True)


def main():
    st.title("πŸ”¬ Biomedical Papers Analysis")
    
    # File upload section
    uploaded_file = st.file_uploader(
        "Upload Excel file containing papers", 
        type=['xlsx', 'xls'],
        help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
    )
    
    if uploaded_file is not None:
        # Process Excel file
        if st.session_state.processed_data is None:
            with st.spinner("Processing file..."):
                df = process_excel(uploaded_file)
                if df is not None:
                    st.session_state.processed_data = df.dropna(subset=["Abstract"])
    
    if st.session_state.processed_data is not None:
        df = st.session_state.processed_data
        st.write(f"πŸ“Š Loaded {len(df)} papers")
        
        # Individual Summaries Section
        st.header("πŸ“ Individual Paper Summaries")
        
        # Question input before the unified generate button
        st.header("❓ Question-focused Summary (Optional)")
        question = st.text_input("Enter your research question (optional):")
        
        # Unified generate button
        if st.button("Generate Analysis"):
            try:
                # Step 1: Generate Individual Summaries
                if st.session_state.summaries is None:
                    with st.spinner("Generating individual summaries..."):
                        model, tokenizer = load_model("summarize")
                        
                        progress_text = st.empty()
                        progress_bar = st.progress(0)
                        summary_display = st.container()
                        
                        summaries = []
                        for i, (_, row) in enumerate(df.iterrows()):
                            progress_text.text(f"Processing paper {i+1} of {len(df)}")
                            progress_bar.progress((i + 1) / len(df))
                            
                            summary = generate_summary(row['Abstract'], model, tokenizer)
                            summaries.append(summary)
                            
                            with summary_display:
                                st.write(f"**Paper {i+1}:** {row['Article Title']}")
                                st.write(summary)
                                st.divider()
                        
                        st.session_state.summaries = summaries
                        
                        # Clear memory after individual summaries
                        del model
                        del tokenizer
                        torch.cuda.empty_cache()
                        gc.collect()
                
                # Step 2: Generate Question-Focused Summary (only if question is provided)
                if question.strip():
                    with st.spinner("Generating question-focused summary..."):
                        # Clear memory before question processing
                        torch.cuda.empty_cache()
                        gc.collect()
                        
                        results = st.session_state.text_processor.find_most_relevant_abstracts(
                            question,
                            df['Abstract'].tolist(),
                            top_k=5
                        )
                        
                        model, tokenizer = load_model("question_focused")
                        
                        relevant_abstracts = df['Abstract'].iloc[results['top_indices']].tolist()
                        focused_summary = generate_focused_summary(
                            question,
                            relevant_abstracts,
                            model,
                            tokenizer
                        )
                        
                        st.subheader("Question-Focused Summary")
                        st.write(focused_summary)
                        
                        st.subheader("Most Relevant Papers")
                        relevant_papers = df.iloc[results['top_indices']][
                            ['Article Title', 'Authors', 'Publication Year', 'DOI']
                        ]
                        relevant_papers['Relevance Score'] = results['scores']
                        relevant_papers['Publication Year'] = relevant_papers['Publication Year'].astype(int)
                        
                        st.dataframe(
                            relevant_papers,
                            column_config={
                                'Publication Year': st.column_config.NumberColumn('Year', format="%d"),
                                'Relevance Score': st.column_config.NumberColumn('Relevance', format="%.3f")
                            },
                            hide_index=True
                        )
                        
                        # Clear memory after question processing
                        del model
                        del tokenizer
                        torch.cuda.empty_cache()
                        gc.collect()
            
            except Exception as e:
                st.error(f"Error in analysis: {str(e)}")
        
        # Display sorted summaries if they exist
        if st.session_state.summaries is not None:
            st.subheader("All Paper Summaries")
            sort_options = {
                'Article Title': 'Article Title',
                'Authors': 'Authors',
                'Publication Year': 'Publication Year',
                'Source Title': 'Source Title'
            }
            
            col1, col2 = st.columns(2)
            with col1:
                sort_column = st.selectbox("Sort by:", list(sort_options.keys()))
            with col2:
                ascending = st.checkbox("Ascending order", True)
            
            display_df = df.copy()
            display_df['Summary'] = st.session_state.summaries
            display_df['Publication Year'] = display_df['Publication Year'].astype(int)
            sorted_df = display_df.sort_values(by=sort_options[sort_column], ascending=ascending)
            
            st.dataframe(
                sorted_df[['Article Title', 'Authors', 'Source Title', 
                          'Publication Year', 'DOI', 'Summary']],
                column_config={
                    'Article Title': st.column_config.TextColumn('Article Title', width='medium'),
                    'Authors': st.column_config.TextColumn('Authors', width='medium'),
                    'Source Title': st.column_config.TextColumn('Source Title', width='medium'),
                    'Publication Year': st.column_config.NumberColumn('Year', format="%d"),
                    'DOI': st.column_config.TextColumn('DOI', width='small'),
                    'Summary': st.column_config.TextColumn('Summary', width='large'),
                },
                hide_index=True
            )

if __name__ == "__main__":
    main()