Spaces:
Sleeping
Sleeping
File size: 12,958 Bytes
60b1427 1229bf2 60b1427 1229bf2 957d2c2 1bd8049 1229bf2 dde1577 957d2c2 dde1577 1bd8049 957d2c2 dde1577 1bd8049 1229bf2 dde1577 957d2c2 dde1577 1bd8049 957d2c2 1bd8049 dde1577 1bd8049 60b1427 6cd4890 60b1427 6cd4890 60b1427 d16f597 60b1427 6cd4890 d16f597 60b1427 2c2de78 60b1427 1229bf2 60b1427 6cd4890 1229bf2 60b1427 1229bf2 60b1427 1229bf2 60b1427 1229bf2 60b1427 1229bf2 60b1427 1229bf2 60b1427 1229bf2 60b1427 1229bf2 60b1427 6cd4890 60b1427 1229bf2 60b1427 1229bf2 60b1427 1229bf2 60b1427 1229bf2 60b1427 6cd4890 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import streamlit as st
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from peft import PeftModel
from text_processing import TextProcessor
import gc
import time
from pathlib import Path
# Configure page
st.set_page_config(
page_title="Biomedical Papers Analysis",
page_icon="π¬",
layout="wide"
)
# Initialize session state
if 'processed_data' not in st.session_state:
st.session_state.processed_data = None
if 'summaries' not in st.session_state:
st.session_state.summaries = None
if 'text_processor' not in st.session_state:
st.session_state.text_processor = None
def manage_resources():
"""Clear memory and ensure resources are available"""
# Force garbage collection
gc.collect()
# Clear CUDA cache if available
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Set torch to use CPU
torch.set_num_threads(8) # Use half of available CPU threads for each model
def load_model(model_type):
"""Load appropriate model based on type with resource management"""
manage_resources()
try:
if model_type == "summarize":
base_model = AutoModelForSeq2SeqLM.from_pretrained(
"facebook/bart-large-cnn",
cache_dir="./models",
device_map=None, # Explicitly set to None for CPU
torch_dtype=torch.float32
).to("cpu") # Force CPU
model = PeftModel.from_pretrained(
base_model,
"pendar02/results",
device_map=None, # Explicitly set to None for CPU
torch_dtype=torch.float32,
is_trainable=False # Set to inference mode
).to("cpu") # Force CPU
tokenizer = AutoTokenizer.from_pretrained(
"facebook/bart-large-cnn",
cache_dir="./models"
)
else: # question_focused
base_model = AutoModelForSeq2SeqLM.from_pretrained(
"GanjinZero/biobart-base",
cache_dir="./models",
device_map=None, # Explicitly set to None for CPU
torch_dtype=torch.float32
).to("cpu") # Force CPU
model = PeftModel.from_pretrained(
base_model,
"pendar02/biobart-finetune",
device_map=None, # Explicitly set to None for CPU
torch_dtype=torch.float32,
is_trainable=False # Set to inference mode
).to("cpu") # Force CPU
tokenizer = AutoTokenizer.from_pretrained(
"GanjinZero/biobart-base",
cache_dir="./models"
)
model.eval() # Set to evaluation mode
return model, tokenizer
except Exception as e:
st.error(f"Error loading model: {str(e)}")
raise
@st.cache_data
def process_excel(uploaded_file):
"""Process uploaded Excel file"""
try:
df = pd.read_excel(uploaded_file)
required_columns = ['Abstract', 'Article Title', 'Authors',
'Source Title', 'Publication Year', 'DOI']
# Check required columns
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"Missing required columns: {', '.join(missing_columns)}")
return None
return df[required_columns]
except Exception as e:
st.error(f"Error processing file: {str(e)}")
return None
def preprocess_text(text):
"""Preprocess text to add appropriate formatting before summarization"""
if not isinstance(text, str) or not text.strip():
return text
# Split text into sentences (basic implementation)
sentences = [s.strip() for s in text.replace('. ', '.\n').split('\n')]
# Remove empty sentences
sentences = [s for s in sentences if s]
# Join with proper line breaks
formatted_text = '\n'.join(sentences)
return formatted_text
def generate_summary(text, model, tokenizer):
"""Generate summary for single abstract"""
if not isinstance(text, str) or not text.strip():
return "No abstract available to summarize."
# Preprocess the text first
formatted_text = preprocess_text(text)
inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
with torch.no_grad():
summary_ids = model.generate(
**{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_length": 150,
"min_length": 50,
"num_beams": 4,
"length_penalty": 2.0,
"early_stopping": True
}
)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def generate_focused_summary(question, abstracts, model, tokenizer):
"""Generate focused summary based on question"""
# Preprocess each abstract
formatted_abstracts = [preprocess_text(abstract) for abstract in abstracts]
combined_input = f"Question: {question} Abstracts: " + " [SEP] ".join(formatted_abstracts)
inputs = tokenizer(combined_input, return_tensors="pt", max_length=1024, truncation=True)
with torch.no_grad():
summary_ids = model.generate(
**{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_length": 200,
"min_length": 50,
"num_beams": 4,
"length_penalty": 2.0,
"early_stopping": True
}
)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def main():
st.title("π¬ Biomedical Papers Analysis")
# File upload section
uploaded_file = st.file_uploader(
"Upload Excel file containing papers",
type=['xlsx', 'xls'],
help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
)
if uploaded_file is not None:
# Process Excel file
if st.session_state.processed_data is None:
with st.spinner("Processing file..."):
df = process_excel(uploaded_file)
if df is not None:
st.session_state.processed_data = df.dropna(subset=["Abstract"])
if st.session_state.processed_data is not None:
df = st.session_state.processed_data
st.write(f"π Loaded {len(df)} papers")
# Individual Summaries Section
st.header("π Individual Paper Summaries")
# Question input before the unified generate button
st.header("β Question-focused Summary (Optional)")
question = st.text_input("Enter your research question (optional):")
# Unified generate button
if st.button("Generate Analysis"):
try:
# Step 1: Generate Individual Summaries
if st.session_state.summaries is None:
with st.spinner("Generating individual summaries..."):
model, tokenizer = load_model("summarize")
progress_text = st.empty()
progress_bar = st.progress(0)
summary_display = st.container()
summaries = []
for i, (_, row) in enumerate(df.iterrows()):
progress_text.text(f"Processing paper {i+1} of {len(df)}")
progress_bar.progress((i + 1) / len(df))
summary = generate_summary(row['Abstract'], model, tokenizer)
summaries.append(summary)
with summary_display:
st.write(f"**Paper {i+1}:** {row['Article Title']}")
st.write(summary)
st.divider()
st.session_state.summaries = summaries
# Clear memory after individual summaries
del model
del tokenizer
torch.cuda.empty_cache()
gc.collect()
# Step 2: Generate Question-Focused Summary (only if question is provided)
if question.strip():
with st.spinner("Generating question-focused summary..."):
# Clear memory before question processing
torch.cuda.empty_cache()
gc.collect()
results = st.session_state.text_processor.find_most_relevant_abstracts(
question,
df['Abstract'].tolist(),
top_k=5
)
model, tokenizer = load_model("question_focused")
relevant_abstracts = df['Abstract'].iloc[results['top_indices']].tolist()
focused_summary = generate_focused_summary(
question,
relevant_abstracts,
model,
tokenizer
)
st.subheader("Question-Focused Summary")
st.write(focused_summary)
st.subheader("Most Relevant Papers")
relevant_papers = df.iloc[results['top_indices']][
['Article Title', 'Authors', 'Publication Year', 'DOI']
]
relevant_papers['Relevance Score'] = results['scores']
relevant_papers['Publication Year'] = relevant_papers['Publication Year'].astype(int)
st.dataframe(
relevant_papers,
column_config={
'Publication Year': st.column_config.NumberColumn('Year', format="%d"),
'Relevance Score': st.column_config.NumberColumn('Relevance', format="%.3f")
},
hide_index=True
)
# Clear memory after question processing
del model
del tokenizer
torch.cuda.empty_cache()
gc.collect()
except Exception as e:
st.error(f"Error in analysis: {str(e)}")
# Display sorted summaries if they exist
if st.session_state.summaries is not None:
st.subheader("All Paper Summaries")
sort_options = {
'Article Title': 'Article Title',
'Authors': 'Authors',
'Publication Year': 'Publication Year',
'Source Title': 'Source Title'
}
col1, col2 = st.columns(2)
with col1:
sort_column = st.selectbox("Sort by:", list(sort_options.keys()))
with col2:
ascending = st.checkbox("Ascending order", True)
display_df = df.copy()
display_df['Summary'] = st.session_state.summaries
display_df['Publication Year'] = display_df['Publication Year'].astype(int)
sorted_df = display_df.sort_values(by=sort_options[sort_column], ascending=ascending)
st.dataframe(
sorted_df[['Article Title', 'Authors', 'Source Title',
'Publication Year', 'DOI', 'Summary']],
column_config={
'Article Title': st.column_config.TextColumn('Article Title', width='medium'),
'Authors': st.column_config.TextColumn('Authors', width='medium'),
'Source Title': st.column_config.TextColumn('Source Title', width='medium'),
'Publication Year': st.column_config.NumberColumn('Year', format="%d"),
'DOI': st.column_config.TextColumn('DOI', width='small'),
'Summary': st.column_config.TextColumn('Summary', width='large'),
},
hide_index=True
)
if __name__ == "__main__":
main()
|