File size: 3,715 Bytes
51905ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import streamlit as st
from transformers import pipeline
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input
from sklearn.neighbors import NearestNeighbors
from PIL import Image
import numpy as np
import glob
import os

resnet_model = ResNet50(weights='imagenet')

st.title("CS634 - Assignment 3")

user_image_input = st.file_uploader("Upload Images", type=["jpg"])


path='lfw/V*'
photos=[]
for fold in glob.glob(path, recursive=True):
    for subdir, dirs, files in os.walk(fold):
        for file in files:
            #st.write(file)
            photos.append(os.path.join(subdir, file))
            
photos.insert(0,"")
celebrity_photo = st.selectbox("Select Photo",photos)

            
            
def extract_features(photos, resnet_model):
    features = {}
    for photo in photos:
        if(photo!=""):
            img = image.load_img(photo, target_size=(224, 224))
            x = image.img_to_array(img)
            x = np.expand_dims(x, axis=0)
            x = preprocess_input(x)

            features_vector = resnet_model.predict(x)
            features_vector = features_vector.flatten()
            features[photo] = features_vector

    return features
            

            
            
if(len(celebrity_photo) != 0):
    #st.image(user_image_input, caption=None, width=None, use_column_width=None, clamp=False, channels="RGB", output_format="auto")
    user_input_image = None
    st.write(celebrity_photo)
    #st.write(user_image_input.read())
    size=len(photos)
    #st.write(size)
    st.write("Query Image: ")
    st.image(celebrity_photo)
    features = extract_features(photos, resnet_model)
    
    features_array = np.array(list(features.values()))

    nn_model = NearestNeighbors(n_neighbors=11, metric='euclidean')
    nn_model.fit(features_array)

    query_image_path = photos[size-1]
    query_image_feature = features[query_image_path].reshape(1, -1)
    distances, indices = nn_model.kneighbors(query_image_feature)
    
    
    st.write("Similar Images:")
    for i in range(1,11):
        similar_image_path = photos[indices[0][i]]
        similar_image_distance = distances[0][i]
        st.write("Similar Image #{}: Distance: {}".format(i, similar_image_distance))
        st.image(similar_image_path)
        

if(user_image_input != None):
    celebrity_photo = []
    #st.image(user_image_input, caption=None, width=None, use_column_width=None, clamp=False, channels="RGB", output_format="auto")
    im = Image.open(user_image_input)
    im=im.resize((224,224))
    im.save("input_image.jpg", "JPEG")
    photos.append("input_image.jpg")
    #st.write(user_image_input.read())
    size=len(photos)
    #st.write(size)
    st.write("Query Image: ")
    st.image(photos[size-1])
    features = extract_features(photos, resnet_model)
    
    features_array = np.array(list(features.values()))

    nn_model = NearestNeighbors(n_neighbors=11, metric='euclidean')
    nn_model.fit(features_array)

    query_image_path = photos[size-1]
    query_image_feature = features[query_image_path].reshape(1, -1)
    distances, indices = nn_model.kneighbors(query_image_feature)
    
    
    st.write("Similar Images:")
    for i in range(1,11):
        similar_image_path = photos[indices[0][i]]
        similar_image_distance = distances[0][i]
        st.write("Similar Image #{}: Distance: {}".format(i, similar_image_distance))
        st.image(similar_image_path)
#else:
#    size=len(photos)
#    st.write(size)
#    st.image(photos[size-1])
#    features = extract_features(photos, resnet_model)